Rapid Fabrication of Large-sized Solid Shape using Variable Lamination Manufacturing and Multi-functional Hotwire Cutting System
Abstract
Rapid prototyping (RP) technologies have been widely used to reduce the lead-time and
development cost of new products. The VLM-ST process has been developed to overcome the
currently developed RP technologies such as a large building time, a high building cost, an
additional post-processing and a large apparatus cost. However, the VLM-ST process has the
limitation of fabricated model size (VLM300: 297×210 mm, VLM400: 420×297 mm) and the
limitation of slope angle when the large-sized model more than 600 × 600 × 600 mm or
axisymmetric shape is fabricated. The objective of this paper is to develop a multi-functional
hotwire cutting system (MHC) using EPS-foam block or sheet as the working material in order to
fabricate a large-sized shape more than 600 × 600 × 600 mm. Because the MHC apparatus
employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and
a turn-table, it allows the easy fabrication of various 3D shapes, such as (1) an axisymmetric
shape or a sweeping cross-sectioned pillar shape using the hot-strip in the form of sweeping
surface and EPS foam block on the turn-table, (2) a polyhedral complex shape using the hotwire
and EPS foam block on the turn-table, and (3) a ruled surface approximated freeform shape using
the hotwire and EPS foam sheet. In order to examine the applicability of the developed MHC
apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were
fabricated by the apparatus.