Show simple item record

dc.contributor.advisorBratton, Shawn B.en
dc.creatorSon, Jae Kyoungen
dc.date.accessioned2010-06-04T19:37:30Zen
dc.date.available2010-06-04T19:37:30Zen
dc.date.issued2009-12en
dc.identifier.urihttp://hdl.handle.net/2152/7790en
dc.descriptiontexten
dc.description.abstractTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potentially useful anticancer agent with exquisite selectivity for cancer cells. Unfortunately, many cancers exhibit or acquire resistance to TRAIL. We report herein that TRAIL activates a TGF-ß-activated kinase 1→mitogen-activated protein kinase (MAPK) kinase 3 (MKK3)/MKK6→p38 pathway in prostate cancer cells that transcriptionally upregulates expression of the antiapoptotic BCL-2 family member MCL-1. TRAIL alone triggered robust formation of the "death-inducing signaling complex", activation of the initiator caspase-8, and truncation of the BH3-only protein BID (tBID). Nevertheless, simultaneous disruption of the p38 MAPK pathway was required to suppress MCL-1 expression, thereby allowing tBID to activate the proapoptotic BCL-2 family member BAK and stimulate mitochondrial outer membrane permeabilization (MOMP). Release of the inhibitor-of-apoptosis antagonist, Smac/DIABLO, from the intermembrane space was sufficient to promote TRAIL-induced apoptosis, whereas release of cytochrome c and apoptosome function were dispensable. Even following MOMP, however, mitochondrial-generated reactive oxygen species activated a secondary signaling pathway, involving c-Jun N-terminal kinases, that likewise upregulated MCL-1 expression and partially rescued cells from death. Thus, stress kinases activated at distinct steps in the extrinsic pathway mediate TRAIL resistance through maintenance of MCL-1 expression.en
dc.format.mediumelectronicen
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subjectTRAIL resistanceen
dc.subjectTumor necrosis factor-related apoptosis-inducing ligand resistanceen
dc.subjectAnticancer agentsen
dc.subjectMCL-1 expressionen
dc.titleTRAIL resistance through transcriptional control of MCL-1en
dc.description.departmentPharmacyen
thesis.degree.departmentPharmacyen
thesis.degree.disciplinePharmacyen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record