Gas separations using mixed matrix membranes

Access full-text files

Date

2003-01-07

Authors

Stephen J. Miller
William Koros
De Q. Vu
Rajiv Mahajan

Journal Title

Journal ISSN

Volume Title

Publisher

United States Patent and Trademark Office

Abstract

Mixed matrix membranes capable of separating carbon dioxide from mixtures including carbon dioxide and methane, and processes for purifying methane using the membranes, are disclosed. The membranes are polymer membranes with a selective layer thickness of between about 1000 Angstroms to about 0.005 inch, that include discrete carbon-based molecular sieve particles with sizes of between about 0.5 microns to about 5.0 microns. The preferred ratio of particles to polymer is about 20% to about 50% by volume. A preferred method for preparing the mixed matrix membrane is by dispersing the particles in a solvent, adding a small quantity of the desired polymer or “sizing agent” to “size” or “prime” the particles, adding a polymer, casting a film of the polymer solution, and evaporating the solvent to form a mixed matrix membrane film. The mixed matrix membrane film permits passage of carbon dioxide and methane, but at different permeation rates, such that the ratio of the relative permeation rates of carbon dioxide to methane is larger through the mixed matrix membrane film than through the original polymer. The polymer is preferably a rigid, glassy polymer, more preferably, with a glass transition temperature above about 150° C. The mixed matrix membrane is preferably in the form of a dense film or a hollow fiber. A mixture containing carbon dioxide and methane can be enriched in methane by selective passage of carbon dioxide over methane in a gas-phase process through the membrane.

Description

Keywords

LCSH Subject Headings

Citation