TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploring scaling limits and computational paradigms for next generation embedded systems

    Thumbnail
    View/Open
    zykova78176.pdf (611.1Kb)
    Date
    2009-12
    Author
    Zykov, Andrey V.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    It is widely recognized that device and interconnect fabrics at the nanoscale will be characterized by a higher density of permanent defects and increased susceptibility to transient faults. This appears to be intrinsic to nanoscale regimes and fundamentally limits the eventual benefits of the increased device density, i.e., the overheads associated with achieving fault-tolerance may counter the benefits of increased device density -- density-reliability tradeoff. At the same time, as devices scale down one can expect a higher proportion of area to be associated with interconnection, i.e., area is wire dominated. In this work we theoretically explore density-reliability tradeoffs in wire dominated integrated systems. We derive an area scaling model based on simple assumptions capturing the salient features of hierarchical design for high performance systems, along with first order assumptions on reliability, wire area, and wire length across hierarchical levels. We then evaluate overheads associated with using basic fault-tolerance techniques at different levels of the design hierarchy. This, albeit simplified model, allows us to tackle several interesting theoretical questions: (1) When does it make sense to use smaller less reliable devices? (2) At what scale of the design hierarchy should fault tolerance be applied in high performance integrated systems? In the second part of this thesis we explore perturbation-based computational models as a promising choice for implementing next generation ubiquitous information technology on unreliable nanotechnologies. We show the inherent robustness of such computational models to high defect densities and performance uncertainty which, when combined with low manufacturing precision requirements, makes them particularly suitable for emerging nanoelectronics. We propose a hybrid eNano-CMOS perturbation-based computing platform relying on a new style of configurability that exploits the computational model's unique form of unstructured redundancy. We consider the practicality and scalability of perturbation-based computational models by developing and assessing initial foundations for engineering such systems. Specifically, new design and decomposition principles exploiting task specific contextual and temporal scales are proposed and shown to substantially reduce complexity for several benchmark tasks. Our results provide strong evidence for the relevance and potential of this class of computational models when targeted at emerging unreliable nanoelectronics.
    Department
    Electrical and Computer Engineering
    Description
    text
    Subject
    Integrated systems
    Reliability
    Fault tolerance
    Nanoscale devices
    Nanotechnology
    Computational models
    URI
    http://hdl.handle.net/2152/7535
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin