New perspectives and applications for greedy algorithms in machine learning

Date

2018-08-15

Authors

Khanna, Rajiv Ashu

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Approximating probability densities is a core problem in Bayesian statistics, where the inference involves the computation of a posterior distribution. Variational Inference (VI) is a technique to approximate posterior distributions through optimization. It involves specifying a set of tractable densities, out of which the final approximation is to be chosen. While VI is traditionally motivated with the goal of tractability, the focus in this dissertation is to use Bayesian approximation to obtain parsimonious distributions. With this goal in mind, we develop greedy algorithm variants and study their theoretical properties by establishing novel connections of the resulting optimization problems in parsimonious VI with traditional studies in the discrete optimization literature. Specific realizations lead to efficient solutions for many sparse probabilistic models like Sparse regression, Sparse PCA, Sparse Collective Matrix Factorization (CMF) etc. For cases where existing results are insufficient to provide acceptable approximation guarantees, we extend the optimization results for some large scale algorithms to a much larger class of functions.The developed methods are applied to both simulated and real world datasets, including high dimensional functional Magnetic Resonance Imaging (fMRI) datasets, and to the real world tasks of interpreting data exploration and model predictions.

Description

LCSH Subject Headings

Citation