TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 1994 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 1994 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling of Selected SFF Process Limits

    Thumbnail
    View/Open
    1994-32-Mendez.pdf (952.9Kb)
    Date
    1994
    Author
    Mendez, Patricio
    Brown, Stuart
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    An analytical model of the thermal field for one scan line during SLS is developed. Quantitative relationships between net heat input and beam velocity are stated for sintering at a given distance from the center of the beam and for the case of maximum surface temperature. For the maximum surface temperature, two extreme cases have been analyzed: pure conduction heat transport, and highly convective molten consolidation. It is suggested that a highly convective process allows significantly higher net heat input than pure conduction. It is found that for certain conditions, the relationship between net heat input and beam velocity is independent of the thermal conductivity of the material. Key Words: model, melting, selective laser sintering, thermal, process window.
    Department
    Mechanical Engineering
    Subject
    selective laser sintering
    model
    thermal
    URI
    http://hdl.handle.net/2152/68658
    Collections
    • 1994 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin