TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and engineering of epitope specific antibodies

    Thumbnail
    View/Open
    HYUN-DISSERTATION-2016.pdf (4.825Mb)
    Date
    2016-08-16
    Author
    Hyun, Jeongmin
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The knowledge of three-dimensional structures of membrane proteins aids in structure-based drug design, since about 60% of approved drug targets are known as membrane proteins. To date, chaperone-assisted protein co-crystallization that bypass the need for animal immunization is becoming an attractive method to elucidate structures of recalcitrant targets such as proteins with intrinsically disordered domains as found in membrane proteins. Here we describe antibody-engineering strategies for developing crystallization chaperones. Toward this goal, we (1) engineered EE peptide-specific single-chain variable fragment (scFv) to improve biophysical characteristics, (2) constructed synthetic single domain antibody library to be specific for targets by phage display, and (3) de novo designed FLAG peptide-specific antibodies using a novel computational method. In the first study, we converted peptide-specific scFv to antigen-binding fragment (Fab), which is the most successful format of antibody-based crystallization chaperones for integral membrane proteins so far. The larger size of Fab/EE increased the overall stability without disruption of binding affinity and extended crystal contact areas those are favorable characteristics for use as a crystal chaperone. In the second study, a 10⁶ synthetic phage display single domain antibody (sdAb) library was constructed and used to identify sdAbs binding the repeat in toxin domain of B.pertussis adenylate cyclase toxin (ACT). This protein is an intrinsically disordered calcium binding protein with no homology to any known protein structure and is a candidate vaccine antigen. From phage-based screening, we isolated three sdAbs to be used for further characterization. In the last study, we utilized an in silico approach to the design the antibodies using OptCDR that is a general computational method that employs de novo design of complementarity determining regions (CDRs) to engineer antibody-antigen interactions. Using this method, we designed CDRs binding the minimal FLAG peptide (sequence: DYKD) and isolated four antibodies with high specificity and nanomolar affinity for the DYKD. The result demonstrates that antibody specificity based on in silico design method can guide future engineering of antibody-based crystallization chaperone. Taken together, we have identified antibodies with improved binding properties and biophysical characteristics for using as crystallization chaperones without animal immunization to help guide future antibody chaperone engineering for the structural investigation of diverse target proteins.
    Department
    Cellular and Molecular Biology
    Subject
    Antibody
    Crystallization chaperone
    URI
    http://hdl.handle.net/2152/68580
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin