TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Inspection and evaluation of artifacts in digital video sources

    Thumbnail
    View/Open
    GOODALL-DISSERTATION-2018.pdf (6.300Mb)
    Date
    2018-05-02
    Author
    Goodall, Todd Richard
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Streaming digital video content providers such as YouTube, Amazon, Hulu, and Netflix collaborate with production teams to obtain new and old video content. These collaborations lead to an accumulation of video sources, some of which might contain unacceptable visual artifacts. Artifacts may inadvertently enter the video master at any point in the production pipeline, due to any of a number of equipment and user failures. Unfortunately, these artifacts are difficult to detect since no pristine reference exists for comparison. As of now, few automated tools exist that can effectively capture the most common forms of these artifacts. This work studies no-reference video source inspection for generalized artifact detection and subjective quality prediction, which will ultimate inform decisions related to acquisition of new content. Automatically identifying the locations and severities of video artifacts is a difficult problem. We have developed a general method for detecting local artifacts by learning differences in the statistics between distorted and pristine video frames. Our model, which we call the Video Impairment Mapper (VID-MAP), produces a full resolution map of artifact detection probabilities based on comparisons of excitatory and inhibatory convolutional responses. Validation on a large database shows that our method outperforms the previous state-of-the-art of even distortion-specific detectors. A variety of powerful picture quality predictors are available that rely on neuro-statistical models of distortion perception. We extend these principles to video source inspection, by coupling spatial divisive normalization with a series of filterbanks tuned for artifact detection, implemented using a common convolutional framework. We developed the Video Impairment Detection by SParse Error CapTure (VIDSPECT) model, which leverages discriminative sparse dictionaries that are tuned to detect specific artifacts. VIDSPECT is simple, highly generalizable, and yields better accuracy than competing methods. To evaluate the perceived quality of video sources containing artifacts, we built a new digital video database, called the LIVE Video Masters Database, which contains 384 videos affected by the types of artifacts encountered in otherwise pristine digital video sources. We find that VIDSPECT delivers top performance on this database for most artifacts tested, and competitive performance otherwise, using the same basic architecture in all cases.
    Department
    Electrical and Computer Engineering
    Subject
    Digital video
    Artifact detection
    VIDMAP
    VIDSPECT
    URI
    http://hdl.handle.net/2152/68147
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin