TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of reference materials for cement paste and mortar : calibration of rheological measurements

    Thumbnail
    View/Open
    OLIVAS-THESIS-2016.pdf (3.891Mb)
    Date
    2016-05
    Author
    Olivas, Alex
    0000-0001-8331-8951
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This thesis presents the results of five interrelated projects conducted to advance the progress of studies in concrete workability. Specifically, work conducted towards the development and certification of Standard Reference Materials (SRMs) for cement paste and mortar rheometers are presented in this work. Other SRMs developed at NIST have served a multitude of services, but these SRMs target the concrete industry by providing a way for commercially available rheometers to be calibrated economically and with good accuracy. However, problems regarding reproducibility of the paste SRM, microbial contamination of the paste SRM, and accuracy of measurement have limited the development of the concrete SRM. Thus, this thesis includes studies that were conducted to address these issues. In Project 1, the SRM preparation method was modified to improve reproducibility. The major outcome of this project was the development and re-certification of a standard reference material for cement paste. This recertification includes new rheological characteristics and statistical analyses. The goal of Project 2 was to extend the shelf life of the SRM since it was discovered that after 10 days the rheological properties of the SRM was not stable It was found that use of biocides, such as sodium propionate, extends the stability of the SRM. In Project 3, the development and certification of a SRM for mortar is provided with rheological properties and statistical analyses. Description of a model that was developed to predict the behavior of the SRM is also provided. In Project 4, a literature review regarding why industrial rheometers experience slippage issues was conducted. Key findings were that slippage issues depends on the rheometry choice and boundary conditions (free surfaces). Project 5 presents the results of a critical analysis conducted to evaluate the effect of rheometry systems for calibrating mortar-type rheometers. Rheological behaviors of two SRMs were measured experimentally and the results were compared to a computer simulation models. Discussion on the best rheometry system to avoid slippage is provided in that project. Overall, the outcomes of the work conducted in fulfillment of this thesis serve as the initial steps towards developing a reference material for concrete rheometers.
    Department
    Civil, Architectural, and Environmental Engineering
    Subject
    Rheology
    Reference materials
    Biocide
    Microorganisms
    Microbes
    Slippage
    Rheometry
    Calibration
    Flow curves
    Viscosity
    Bingham
    Mortar
    Suspensions
    URI
    http://hdl.handle.net/2152/68038
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin