Development of an upper-body robotic rehabilitation platform that furthers motor recovery after neuromuscular injuries

Date

2016-05

Authors

Kim, Bongsu

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This dissertation presents the development of an upper-body exoskeleton and its control framework for robotic rehabilitation of the arm and shoulder after a neurological disorder such as a stroke. The first step is designing an exoskeleton hardware that supports natural mobility of the human upper body with a wide range of motion for enabling most rehabilitation exercises. The exoskeleton is equipped with torque-controllable actuation units for implementing various robotic rehabilitation protocols based on force and impedance behaviors. The control framework is designed to exhibit a highly backdrivable behavior with a gravity compensation for the robot's weight and optional gravity support for user's arm weight to promote voluntary movements of patients with motor impairments. The control framework also serves as a `substrate' of other robotic control behaviors for rehabilitation exercises by superimposing desired force or impedance profiles. A stability analysis is performed to examine the coupled stability between the robot and human. After designing the hardware and control, several experiments are carried out to test the mobility and dynamic behavior of the robot. Lastly, a human subject study evaluates the effectiveness of the robot's shoulder mechanism and control algorithm in assisting the coordination around the shoulder. The results show that the robot induces desirable coordination in the presence of abnormalities at the shoulder.

Description

LCSH Subject Headings

Citation