TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Indoor secondary organic aerosol formation : influence of particle controls, mixtures, and surfaces

    Thumbnail
    View/Open
    waringm68129.pdf (1.020Mb)
    Date
    2009-08
    Author
    Waring, Michael Shannon
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Ozone (O₃) and terpenoids react to produce secondary organic aerosol (SOA). This work explored novel ways that these reactions form SOA indoors, with five investigations, in two categories: investigations of (i) the impacts of particle controls on indoor SOA formation, and (ii) two fundamental aspects of indoor SOA formation. For category (i), two investigations examined the particle control devices of ion generators, which are air purifiers that are ineffective at removing particles and emit ozone during operation. With a terpenoid source present (an air freshener), ion generators acted as steady-state SOA generators, both in a 15 m³ chamber and 27 m³ room. The final investigation in category (i) modeled how heating, ventilating, and air-conditioning (HVAC) systems influence SOA formation. Influential HVAC parameters were flow rates, particle filtration, and indoor temperature for residential and commercial models, as well as ozone removal by particle-laden filters for the commercial model. For category (ii), the first investigation measured SOA formation from ozone reactions with single terpenoids and terpenoid mixtures in a 90 L Teflon-film chamber, at low and high ozone concentrations. For low ozone, experiments with only d-limonene yielded the largest SOA number formation, relative to other mixtures, some of which had three times the effective amount of reactive terpenoids. This trend was not observed for high ozone experiments, and these results imply that ozone-limited reactions with d-limonene form byproducts with high nucleation potential. The second investigation in category (ii) explored SOA formation from ozone reactions with surface-adsorbed terpenoids. A model framework was developed to describe SOA formation due to ozone/terpenoid surface reactions, and experiments in a 283 L chamber determined the SOA yield for ozone/d-limonene surface reactions. The observed molar yields were 0.14–0.16 over a range of relative humidities, and lower relative humidity led to higher SOA number formation from surface reactions. Building materials on which ozone/d-limonene surface reactions are predicted to lead to substantial SOA formation are those with initially low surface reactivity, such as glass, sealed materials, or metals. The results from category (ii) suggest significant, previously unexplored mechanisms of SOA number formation indoors.
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    Indoor secondary organic aerosol formation
    Secondary organic aerosols
    Ozone
    Terpenoids
    Particle controls
    D-limonene
    Surface reactions
    URI
    http://hdl.handle.net/2152/6604
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin