TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Chemical vapor deposited two-dimensional material based high frequency flexible field-effect transistors

    Thumbnail
    View/Open
    PARK-DISSERTATION-2018.pdf (3.690Mb)
    Date
    2018-06-20
    Author
    Park, Saungeun
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Flexible nanoelectronics have attracted great attention due to interesting concepts such as wearable electronics and internet of things, which requires high speed and low power consumption flexible smart system with functions ranging from sensing, computing to wireless communicating. In this dissertation, transparent and solution processable nanoscale polyimide film for highly flexible gate dielectrics is demonstrated by in-situ opto-electro-mechanical measurement and utilized for two-dimensional nanomaterials based field-effect transistors (FETs). Graphene thin film transistor with the nanoscale polyimide dielectric on flexible glass is operated in extremely high frequency regime and shows the highest experimental saturation velocity (~8.4 × 10⁶ cm/s) in any materials in any flexible transistors. Molybdenum disulfide (MoS₂) based transistors with embedded gate structure on rigid substrate are demonstrated with enhancement mode operation, ON/OFF ratio over 10⁸, the highest transconductance (~ 70 µS/µm) and saturation velocity (~1.8 × 10⁶ cm/s). CVD MoS₂ FETs on flexible plastic substrates are also demonstrated, showing enhancement mode operation, ON/OFF radio over 10¹⁰ and transconductance (~6 µS/µm). The flexible CVD MoS₂ transistors with embedded gate structure were employed to study effects of substoichiometric doping by HfO [subscript 2-x]. After the doping layer, the flexible MoS₂ transistors show ×8 higher source-drain current density as well as more than ×2 mobility improvements. For the another first demonstration, GHz operation and flexibility of graphene and MoS₂ based FETs are realized on commercial available paper substrates, which indicates flexible two-dimensional material based nanoelectronics can be implemented on paper substrates for systems, sensors, and Internet of Things.
    Department
    Electrical and Computer Engineering
    Subject
    CVD
    Graphene
    MoS2
    Flexible electronics
    Flexible dielectric
    URI
    http://hdl.handle.net/2152/65906
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin