TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Phase-driven optomechanics in exotic photonic media

    Thumbnail
    View/Open
    WANG-DISSERTATION-2018.pdf (5.759Mb)
    Date
    2018-06-22
    Author
    Wang, Danlu, Ph. D.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Integrated photonics provide unique advantages in tailoring and enhancing optical forces. Recent advancements in integrated photonics have introduced many novel phenomena and exotic photonic media, such as photonic topological insulator, negative index material, photonic crystals, 2D material, and strongly-modulated time-dynamic systems. In my dissertation, I theoretically and numerically explore the novel properties and applications of optical forces in these systems. We propose guided-wave photonic pulling forces in photonic crystal waveguides. Photonic crystal waveguides offer great capability to define the mode properties, and can incorporate complex trajectories, leading to unprecedented flexibility and robustness compared to previous works in free space or in longitudinally uniform waveguides. With response theory, a virtual work approach, we establish general rules to tailor optical forces in periodic structures involved with photonic crystals: pulling forces arise from negative gradients in the phase responses of the outgoing modes, which corresponds to forward scattering on the Bloch band diagram with unit cell function corrections. We devise robust forward scattering, first, using topologically protected nonreciprocal chiral edge states, second, using backward (i.e. negative index) waves in a reciprocal system. The structures are tailored to accommodate only the necessary modes, which largely benefits the robustness. With these, we numerically demonstrate long range pulling forces on arbitrary particles through sharp corners. Our work paves the way towards sophisticated optical manipulation with single laser beam. We next explore the implication and applicability of momentum conservation in periodic media, which has been unclear due to the inhomogeneity and strong near field. We first quantify the linear momentum flux of Bloch modes under discrete translational symmetry, which is further understood from their plane wave composition. We then demonstrate through varies examples that the change in momentum flux predicts a total force distributed to both the scatterer and the media. However, one still need response theory to predict the forces on individual objects. Using response theory, we can predict more general forms of optical forces. We numerically demonstrate optical motoring effect due to singularity in the phase responses, and strong optical forces between graphene sheets due to large gradients in the phase responses. In particular, by combining the strong forces in graphene guided-wave system and the exceptional elastic properties of graphene, we can get an SBS gain that is four orders of magnitude stronger than in a silicon step-index waveguide, which may lead to smaller devices for RF signal processing.
    Department
    Physics
    Subject
    Optomechanics
    Optical forces
    Integrated photonic system
    Photonic crystal
    Photonic topological insulator
    URI
    http://hdl.handle.net/2152/65816
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin