• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of millimeter wave ad hoc networks

    Icon
    View/Open
    THORNBURG-DISSERTATION-2017.pdf (1.822Mb)
    Date
    2018-01-23
    Author
    Thornburg, Andrew Scott
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Over the coming few years, the next-generation of wireless networks will be standardized and defined. Ad hoc networks, which operate without expensive infrastructure, are desirable for use cases such as military networks or disaster relief. Millimeter wave (mmWave) technology may enable high speed ad hoc networks. Directional antennas and building blockage limit the received interference power while the huge bandwidth enables high data rates. For this reason, understanding the interference and network performance of mmWave ad hoc networks is crucial for next-generation network design. In my first contribution, I derive the SINR complementary cumulative distribution function (CCDF) for a random single-hop mmWave ad hoc network. These base results are used to further give insights in mmWave ad hoc networks. The SINR distribution is used to compute the transmission capacity of a mmWave ad hoc network using a Taylor bound. The CDF of the interference to noise ratio (INR) is also derived which shows that mmWave ad hoc networks are line-of-sight interference limited. I extend my work in the second contribution to include general clustered Poisson point processes to derive insights in the effect of different spatial interference patterns. Using the developed framework, I derive the ergodic rate of both spatially uniform and cluster mmWave ad hoc networks. I develop scaling trends for the antenna array size to keep the ergodic rate constant. The impact of beam alignment is computed in the final part of the contribution. Finally, I account for the overhead of beam alignment in mmWave ad hoc networks. The final contribution leverages the first two contributions to derive the expected training time a mmWave ad hoc network must perform before data transmission occurs. The results show that the optimal conditions for minimizing the training time are different than the optimal conditions for maximizing rate.
    Department
    Electrical and Computer Engineering
    Subject
    Wireless communication
    5G networks
    Stochastic geometry
    URI
    http://hdl.handle.net/2152/63369
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin