• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Techniques to increase compaction of output responses with unknown (X) values

    Icon
    View/Open
    BAWA-DISSERTATION-2017.pdf (1.907Mb)
    Date
    2018-01-24
    Author
    Bawa, Asad Amin
    0000-0002-9100-6322
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Testing requires checking whether the output response of a circuit or system is correct or has an error. Increasingly complex system-on-chip and 3-D integrated circuits require enormous amounts of manufacturing test data. Test compression techniques are widely used to compress the amount of output response data in a way that if an error is present in the uncompacted output response, it will also be present in the compacted output response with only a negligibly small chance of aliasing. Compacting the output response reduces the number of channels needed on the automatic test equipment (ATE) and reduces tester memory requirements. A major challenge for output compaction techniques is dealing with unknown (X) values in the output response which may arise from many sources such as uninitialized memories, analog blocks, tri-states, false paths, etc. While some compactor designs can guarantee observation of errors in the presence of a small number of X's, they may not be sufficient for designs with high X-densities which are becoming increasingly common. This dissertation presents novel advanced techniques to further optimize the handling of X’s and scale existing schemes to handle higher X-densities. New designs and techniques will be presented to reduce the control data required to more efficiently handle X’s and achieve higher compression with experimental results in the respective sections.
    Department
    Electrical and Computer Engineering
    Subject
    Compaction
    Output
    Unknown
    Compression
    DFT
    URI
    http://hdl.handle.net/2152/63368
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin