TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Secure protocols for contactless credit cards and electronic wallets

    Thumbnail
    View/Open
    JENSEN-DISSERTATION-2017.pdf (2.317Mb)
    Date
    2017-05
    Author
    Jensen, Oliver Christopher
    0000-0002-2779-6876
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The contactless credit card protocol in use today is insecure. The credit card industry has chosen to use the NFC channel for contactless transactions. However, reliance on NFC's short range has led to poor assumptions in the contactless credit card protocol. For example, the card assumes (sometimes incorrectly) that its ability to receive a solicitation implies the cardholder's intent to purchase. In this dissertation, we examine the protocol currently in use, and present a family of three replacement protocols to defend against its deficiencies. First, we consider "outsider" attacks (e.g. eavesdropping, skimming attacks, relay attacks, and attacks facilitated by compromised points of sale) and design our first protocol to defend against these attacks. We call this protocol the Externally Secure CC Protocol, and design it using stepwise refinement. This protocol makes use of single-use "charge tokens" verifiable by the bank, while minimizing computation that needs to occur on the card. Second, we identify two attacks which may be carried out by malicious retailers: Over-charge attacks and Transparent Bridge attacks. Both attacks are predicated on the customer's lack of participation in the protocol, and involve modifying or replacing a charge after it has been confirmed by the customer. We look to Electronic Wallet applications (such as Android Pay and Apple Wallet), which provide a channel between customer and card. We augment the Externally Secure CC Protocol using this channel to construct the Secure CC Protocol, binding charge tokens to a given price, and thus stymieing both outsider and malicious retailer attacks. The Secure CC Protocol supports a property known as linkability: while only the bank can verify charge tokens, tokens from the same card can be recognized as such by the retailer. This property is also supported by the (insecure) protocol in use today, and is commonly used by retailers to construct marketing profiles on their customers. However, linkability has serious consumer privacy consequences, so we consider the converse property of unlinkability, where a retailer cannot identify different purchases as having been made by the same card. We require that our unlinkable protocol make use of existing infrastructure, so as not to require retailer cooperation. In response, we design the Unlinkable Wallet Protocol, leveraging techniques from the Secure CC Protocol to guard against malicious outsiders and retailers, while tunneling secure and unlinkable charge tokens through the protocol in use today.
    Department
    Computer Sciences
    Subject
    Security
    Privacy
    Credit cards
    Payments
    Transactions
    Nfc
    Rfid
    Proximity
    Electronic wallet
    Unlinkability
    Authentication
    URI
    http://hdl.handle.net/2152/63350
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin