TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fast integral equation solver for variable coefficient elliptic PDEs in complex geometries

    Thumbnail
    View/Open
    MALHOTRA-DISSERTATION-2017.pdf (16.45Mb)
    Date
    2017-10-26
    Author
    Malhotra, Dhairya
    0000-0001-9567-1322
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This dissertation presents new numerical algorithms and related software for the numerical solution of elliptic boundary value problems with variable coefficients on certain classes of geometries. The target applications are problems in electrostatics, fluid mechanics, low-frequency electromagnetic and acoustic scattering. We present discretizations based on integral equation formulations which are founded in potential theory and Green's functions. Advantages of our methods include high-order discretization, optimal algorithmic complexity, mesh-independent convergence rate, high-performance and parallel scalability. First, we present a parallel software framework based on kernel independent fast multipole method (FMM) for computing particle and volume potentials in 3D. Our software is applicable to a wide range of elliptic problems such as Poisson, Stokes and low-frequency Helmholtz. It includes new parallel algorithms and performance optimizations which make our volume FMM one of the fastest constant-coefficient elliptic PDE solver on cubic domains. We show that our method is orders of magnitude faster than other N-body codes and PDE solvers. We have scaled our method to half-trillion unknowns on 229K CPU cores. Second, we develop a high-order, adaptive and scalable solver for volume integral equation (VIE) formulations of variable coefficient elliptic PDEs on cubic domains. We use our volume FMM to compute integrals and use GMRES to solve the discretized linear system. We apply our method to compute incompressible Stokes flow in porous media geometries using a penalty function to enforce no-slip boundary conditions on the solid walls. In our largest run, we achieved 0.66 PFLOP/s on 2K compute nodes of the Stampede system (TACC). Third, we develop novel VIE formulations for problems on geometries that can be smoothly mapped to a cube. We convert problems on non-regular geometries to variable coefficient problems on cubic domains which are then solved efficiently using our volume FMM and GMRES. We show that our solver converges quickly even for highly irregular geometries and that the convergence rates are independent of mesh refinement. Fourth, we present a parallel boundary integral equation solver for simulating the flow of concentrated vesicle suspensions in 3D. Such simulations provide useful insights on the dynamics of blood flow and other complex fluids. We present new algorithmic improvements and performance optimizations which allow us to efficiently simulate highly concentrated vesicle suspensions in parallel.
    Department
    Computational Science, Engineering, and Mathematics
    Subject
    Elliptic boundary value problems
    Fast multipole method
    Integral equations
    URI
    http://hdl.handle.net/2152/63349
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin