• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    GHK mirror symmetry, the Knutson-Tao hive cone, and Littlewood-Richardson coefficients

    Icon
    View/Open
    MAGEE-DISSERTATION-2017.pdf (643.9Kb)
    Author
    Magee, Timothy Daniel
    0000-0003-4617-5386
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    I prove that the full Fock-Goncharov conjecture holds for Conf₃[superscript x] ([mathcal] A)-- the configuration space of triples of decorated flags in generic position. As a key ingredient of this proof, I exhibit a maximal green sequence for the quiver of the initial seed. I compute the Landau-Ginzburg potential W on Conf₃[superscript x] ([mathcal] A)[superscript vee] associated to the partial minimal model Conf₃[superscript x] ([mathcal] A) [subset] Conf₃ ([mathcal] A). The integral points of the associated "cone" [Xi] [does not equal] {W[superscript T] [less than or equal to] 0] [subset] Conf₃[superscript x] ([mathcal] A)[superscript vee] ([mathbb R][superscript T]) parametrize a basis for [mathcal O] (Conf₃[superscript x] ([mathcal] A) )= [big o plus] (V[subscript alpha] [o times] V[supscript beta] [o times] V[subscript gamma])[subscript G] and encode the Littlewood-Richardson coefficients c[superscript gamma][subscript alpha beta]. I exhibit a unimodular p[superscript *] map that identifies W with the potential of Goncharov-Shen on Conf₃[superscript x] ([mathcal] A) and Xi with the Knutson-Tao hive cone.
    Department
    Mathematics
    Subject
    Log Calabi-Yau
    Cluster variety
    Knutson-Tao hive cone
    Littlewood-Richardson coefficients
    URI
    http://hdl.handle.net/2152/63035
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin