TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On-chip silicon photonic waveguide devices for biochemical sensing and optical interconnects

    Thumbnail
    View/Open
    YAN-DISSERTATION-2017.pdf (4.164Mb)
    Date
    2017-09-15
    Author
    Yan, Hai, Ph. D.
    0000-0003-2756-7683
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    On-chip photonic devices based on waveguides receives significant attention for its capability in realizing great performance with high integration density. Two of the most representative area of application are biochemical sensing and optical interconnects. Micro- and nano-scale photonic biosensor has become a fast growing research topic driven by the need of portable bio-detection systems with high sensitivity, high throughput, real-time and label-free detection. Various structures, especially those based on silicon-on-insulator (SOI) substrate, have been demonstrated in research, some of which have been developed into commercially available product. In terms of optical interconnect, extensive research and development is underway to try to break the bottleneck in traditional copper interconnect in modern electronics facilities and devices, from local area network to short-reach data links and even down to on-chip interconnect. Silicon photonics is currently the most promising solution to optical interconnect primarily due to its mature processing technologies. Yet other materials, including electro-optic (EO) polymers, are also widely used in specific applications (e.g. EO modulators) for the benefits of high speed and low energy consumption. In this dissertation, various photonic waveguide devices for biochemical sensing and optical interconnect will be presented. First, biosensors based on photonic crystal (PC) microcavities will be demonstrated. A bandpass filter will be introduced to combine multiple PC microcavity sensors into an array. Array of PC biosensors with different parameters was formed to give a wide dynamic range of detection range. The detection of antibiotics and heavy metals will be covered. Then, a novel structure -- subwavelength grating waveguides (SWG) based biosensors will be introduced and its unique thickness-independent surface sensitivity will be analyzed and demonstrated. Thirdly, I will show a novel one-dimensional PC slot waveguide. It offers a simple, high-efficiency and low-loss phase shifter design for silicon-polymer hybrid EO modulators. Strained silicon waveguide for the generation of mid-infrared wave through difference frequency generation will be covered at last. It will show the potential application of chemical sensing with integrated photonic devices.
    Department
    Electrical and Computer Engineering
    Subject
    Silicon photonics
    Waveguides
    Sensing
    Optical interconnects
    Integrated photonic devices
    URI
    http://hdl.handle.net/2152/62066
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin