TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of superparamagnetic nanoparticle-based heating for non-abrasive removal of wax deposits from subsea oil pipelines

    Thumbnail
    View/Open
    MEHTA-THESIS-2015.pdf (4.023Mb)
    Date
    2015-08
    Author
    Mehta, Prachi
    0000-0003-1393-2643
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Flow assurance is a critical problem in the oil and gas industry, as an increasing number of wells are drilled in deep water and ultra-deep water environments. High pressures and temperatures as low as 5°C in these environments hinder flow of hydrocarbon-based fluids by formation of methane hydrate and wax deposits on the inner surface of pipelines. Commonly used methods for removal of deposits from pipelines are chemical injection and foam or gel pigs, which face several limitations. In our work, an application to use superparamagnetic nanoparticle-based heating for flow assurance, in the form of a magnetic nanopaint is presented. Superparamagnetic nanoparticle-based heating has been extensively researched in the biomedical industry for cancer treatment by hyperthermia. Superparamagnetic nanoparticles in dispersions generate heat by application of an oscillating magnetic field as explained by Neel’s relaxation theory. In our application, superparamagnetic Fe₃O₄ nanoparticles are embedded in a thin layer of cured epoxy termed ‘nanopaint’. This nanopaint coating on the internal surface of subsea pipelines could generate heat and thus remove formation of methane hydrates and wax. In our work, the role of key parameters affecting heating performance of superparamagnetic nanoparticles such as particle size, and magnetic field is quantified. Rigorous characterization of physical and magnetic properties of nanoparticles and nanopaint is performed. This is correlated to and used to optimize the heating performance. Heating performance of several samples of Fe₃O₄ nanoparticles varying in size distribution is evaluated in static experiments. Two samples having similar physical and magnetic properties are compared in terms of the correlation between their size distribution and their heating performance. Performance of nanopaint to heat static fluids, flowing fluids and wax deposit is evaluated. Heating performance of superparamagnetic nanoparticles in dispersions and in nanopaint is found to be similar and so it is concluded that Neel’s relaxation theory is applicable to nanopaint. Heating performance of nanopaint in flow experiment is found to be better than in static experiments by a factor greater than 5. A correlation of heating performance of nanopaint at magnetic fields of 100 to 1000 A/m is developed. Finally, implementation issues of nanopaint are addressed. The effect of low ambient temperatures on nanopaint heating performance is evaluated. The theoretical feasibility of generating a magnetic field inside a pipeline is studied. A COMSOL model is used to verify the feasibility of magnetic field propagation inside a steel pipeline and is subsequently used to evaluate nanopaint heating of wax deposits in pipeline. Material and power requirements are analyzed and optimized using the COMSOL model.
    Department
    Petroleum and Geosystems Engineering
    Subject
    Nanotechnology
    Flow assurance
    Subsea
    Pipelines
    Petroleum
    Pipeline deposits
    Wax deposits
    Methane hydrate deposits
    Superparamagnetic nanoparticles
    Superparamagnetic nanoparticle-based heating
    Magnetic nanopaint
    Nanopaint
    Nanoparticles
    URI
    http://hdl.handle.net/2152/46771
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin