TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effects of lateral tectonics on a fluvio-deltaic system : an application to the Ganges Brahmaputra Delta

    Thumbnail
    View/Open
    KOPP-THESIS-2013.pdf (2.116Mb)
    Date
    2013-05
    Author
    Kopp, Jessica Ann
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Deltaic systems have long been recognized for their socioeconomic impacts as well as their high potential to trap and store hydrocarbons. The Sediment Transport and Earth-surface Process (STEP) basin at the University of Texas at Austin has the ability to create large 3D physical experiments, designed for nurturing new understanding of these systems and the parameters that influence their evolution. We explored how a laterally tilting basin influenced a prograding fluvio-deltaic system. The tilting occurs along a rotational axis, bisecting the model’s basement and allowing the delta to experience uplift in one half of basin and subsidence in the opposite half. After six experiments with a range of tilting rates, we observed that varying rates of tilting changed progradation patterns as well as the resultant stratigraphy. The tectonic tilting forced a continuous change in topset slope, which accounts for the evolving behavior of the fluvial system with regards to channel occupation and thus shoreline asymmetry. When slow tilting was applied, the delta advanced faster in the direction of uplift due to the relative decline in basin water depth. This created truncated stratigraphic intervals dominated by active channel cut and fill with thin but laterally linked channel bodies depositing finer material. Behavior was significantly different on the subsidence side of the delta; shoreline migration was stunted while the delta became primarily aggradational, depositing thicker, alternating packages of sands. During higher rates of tilting, deposition at the uplift end was quickly abandoned and instead focused on stacking conformable sequences of delta lobes in the area of increased subsidence, resulting in a complete lack of progradation in any direction. Progressively greater rates of tilting yielded more dramatic steering of channelized flow toward the area of greatest subsidence. Comparing characteristic tectonic and channel timescales proves to be a good predictor of shoreline symmetry along with sediment distribution due to differential subsidence. In this study, we tested the hypothesis that differential subsidence acting on the Ganges-Brahmaputra (G-B) system is responsible for delta asymmetry. The asymmetry in planform shoreline geometry and subsurface stratigraphy of the G-B delta system are extensively similar to the experimental results.
    Department
    Geological Sciences
    Subject
    Delta
    Ganges-Brahmaputra
    Sedimentology
    Sediment transport
    Fluvial
    Tectonics
    Lateral tectonics
    Uplift
    Subsidence
    Flexure
    Bengal basin
    Indian geology
    Geology
    Stratigraphy
    Basins
    Reservoir potential
    Timescales
    Physical experiments
    Experimental stratigraphy
    URI
    http://hdl.handle.net/2152/46073
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin