TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling, simulation and interpretation of spontaneous potential logs to quantify hydrocarbon saturation

    Thumbnail
    View/Open
    BAUTISTA-ANGUIANO-MASTERSREPORT-2016.pdf (1.639Mb)
    Date
    2016-12
    Author
    Bautista-Anguiano, Joshua Christopher
    0000-0002-4951-4681
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The Spontaneous Potential (SP) log has served for decades as a borehole correlation log and, under favorable circumstances, for the reliable in-situ assessment of water resistivity in rock formations of interest. Nevertheless, it is known from laboratory and field measurements that SP logs are sensitive to the presence of hydrocarbons. This report introduces the principles of SP log modeling using a mechanistic approach and describes their implementation in a SP log numerical simulator. Various synthetic and field cases verify the capabilities and improvement due to numerical modeling in the interpretation of SP logs. Quantification of hydrocarbon pore volume from SP logs is currently being validated with laboratory experiments. Those results and any modification to the models introduced in this document will be reported in a future doctoral dissertation. The main contribution and conclusions from this thesis originate from the presence of the electrical double layer (EDL) on the surface of mineral grains, its impact on SP measurements in the presence of hydrocarbons, and the utility and limitations it poses for the calculation of hydrocarbon pore volume and porosity. These petrophysical properties are independent of size. Thus, pore-size distribution and the volume of influence of the EDL in the pore space both determine whether SP logs will capture valuable information about hydrocarbon pore volume. Field cases are presented in which quantification of hydrocarbon pore volume is possible. Simulations made using the mechanistic principles presented in this work show consistency both in modeling and in comparison to measurements at the borehole scale. These field cases consider both water- and hydrocarbon-bearing formations in distinct petrophysical and geological environments. Calculations of hydrocarbon saturation and porosity are verified by the use of porosity and resistivity logs. The theory and results reported in this research highlight the importance of the EDL and the strong impact EDL has on improving interpretation of SP logs. Petrophysicists benefit from the possibility of mechanistically simulate SP logs that indicate the presence of hydrocarbon pore volume. This capability is useful in cases such as fresh-water environments where interpretation of resistivity logs may be problematic, or in mature hydrocarbon fields where only SP logs are available to the interpreter. The ability to simulate SP logs, particularly in mature hydrocarbon fields, offers a faster and less expensive way to evaluate new or overlooked gas or oil reservoirs.
    Department
    Petroleum and Geosystems Engineering
    Subject
    SP
    Spontaneous Potential log
    Water saturation
    Mechanistic log simulation
    Coupled fluxes
    URI
    http://hdl.handle.net/2152/45554
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin