TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-time communication platfrom for wireless cyber-physical applications

    Thumbnail
    View/Open
    WEI-DISSERTATION-2016.pdf (2.277Mb)
    Date
    2016-08
    Author
    Wei, Yi-Hung
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    A Cyber-Physical System (CPS) is a physical system whose operations are monitored, coordinated, and controlled by computation and communication processes. Applying wireless technologies to cyber-physical systems can significantly enhance the system mobility and reduce the deployment and maintenance cost. Existing wireless technologies, however either cannot provide real-time or probabilistic guarantee on packet delivery or are not fast enough to support desired application requirements. Nondeterministic packet transmission and insufficiently high sampling rate will severely hurt application performance. To address this problem, we propose a real-time wireless communication platform called RT-WiFi. In this dissertation, we present our design and implementation of the data link layer and network management framework of RT-WiFi platform that provides predictable packet delivery and high sampling rate. The RT-WiFi communication platform is designed to support configurable components for adjusting design trade-offs including sampling rate, latency variance, reliability and thus can serve as a suitable communication platform for supporting a wide range of wireless CPS applications. Based on the RT-WiFi management platform, we further propose advanced network management techniques to provide jitter-free scheduling algorithm for improving system performance and to support reliable data transmission in noisy environments. To evaluate the effectiveness of our proposed algorithms and to verify the efficiency of our network management platform, we conduct a series of experiments and a case study that integrate the RT-WiFi communication platform with a health care CPS application to investigate the application performance in the real world.
    Department
    Computer Sciences
    Subject
    Cyber-physical systems
    Real-time systems
    Real-time wireless communication
    URI
    http://hdl.handle.net/2152/43585
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin