• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    • Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Low-Level HIV-I Replication and the Dynamics of the Resting CD4(+) T Cell Reservoir for HIV-I in the Setting of HAART

    Icon
    View/Open
    2008_01_Sedaghat.pdf (825.5Kb)
    Date
    2008-01
    Author
    Sedaghat, Ahmad R.
    Siliciano, Robert F.
    Wilke, Claus O.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    In the setting of highly active antiretroviral therapy (HAART), plasma levels of human immunodeficiency type-I (HIV-I) rapidly decay to below the limit of detection of standard clinical assays. However, reactivation of remaining latently infected memory CD4(+) T cells is a source of continued virus production, forcing patients to remain on HAART despite clinically undetectable viral loads. Unfortunately, the latent reservoir decays slowly, with a half-life of up to 44 months, making it the major known obstacle to the eradication of HIV-I infection. However, the mechanism underlying the long half-life of the latent reservoir is unknown. The most likely potential mechanisms are low-level viral replication and the intrinsic stability of latently infected cells. Methods: Here we use a mathematical model of T cell dynamics in the setting of HIV-I infection to probe the decay characteristics of the latent reservoir upon initiation of HAART. We compare the behavior of this model to patient derived data in order to gain insight into the role of low-level viral replication in the setting of HAART. Results: By comparing the behavior of our model to patient derived data, we find that the viral dynamics observed in patients on HAART could be consistent with low-level viral replication but that this replication would not significantly affect the decay rate of the latent reservoir. Rather than low-level replication, the intrinsic stability of latently infected cells and the rate at which they are reactivated primarily determine the observed reservoir decay rate according to the predictions of our model. Conclusion: The intrinsic stability of the latent reservoir has important implications for efforts to eradicate HIV-I infection and suggests that intensified HAART would not accelerate the decay of the latent reservoir.
    Department
    Integrative Biology
    Subject
    human-immunodeficiency-virus
    active antiretroviral therapy
    latent
    reservoir
    combination therapy
    drug-resistance
    infected individuals
    lifelong persistence
    viral persistence
    type-1 infection
    rapid
    turnover
    infectious diseases
    URI
    http://hdl.handle.net/2152/43143
    Citation
    Sedaghat, Ahmad R., Robert F. Siliciano, and Claus O. Wilke. "Low-level HIV-1 replication and the dynamics of the resting CD4+ T cell reservoir for HIV-1 in the setting of HAART." BMC infectious diseases, Vol. 8, No. 1 (Jan., 2008): 2.
    Collections
    • UT Faculty/Researcher Works
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin