Spin-Orbit Alignment for the Circumbinary Planet Host Kepler-16 A

Access full-text files

Date

2011-11

Authors

Winn, Joshua N.
Albrecht, Simon
Johnson, John Asher
Torres, Guillermo
Cochran, William D.
Marcy, Geoffrey W.
Howard, Andrew W.
Isaacson, Howard
Fischer, Debra
Doyle, Laurance

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Kepler-16 is an eccentric low-mass eclipsing binary with a circumbinary transiting planet. Here, we investigate the angular momentum of the primary star, based on Kepler photometry and Keck spectroscopy. The primary star's rotation period is 35.1 +/- 1.0 days, and its projected obliquity with respect to the stellar binary orbit is 1.degrees 6 +/- 2.degrees 4. Therefore, the three largest sources of angular momentum-the stellar orbit, the planetary orbit, and the primary's rotation-are all closely aligned. This finding supports a Formation scenario involving accretion from a single disk. Alternatively, tides may have realigned the stars despite their relatively wide separation (0.2 AU), a hypothesis that is supported by the agreement between the measured rotation period and the "pseudosynchronous" period of tidal evolution theory. The rotation period, chromospheric activity level, and fractional light variations suggest a main-sequence age of 2-4 Gyr. Evolutionary models of low-mass stars can match the observed masses and radii of the primary and secondary stars to within about 3%.

Description

LCSH Subject Headings

Citation

Winn, Joshua N., Simon Albrecht, John Asher Johnson, Guillermo Torres, William D. Cochran, Geoffrey W. Marcy, Andrew W. Howard et al. "Spin-orbit alignment for the circumbinary planet host Kepler-16 A." The Astrophysical Journal Letters, Vol. 741, No. 1 (Nov., 2011): L1.