• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advances towards a multi-dimensional discontinuous Galerkin method for modeling hurricane storm surge induced flooding in coastal watersheds

    Icon
    View/Open
    NEUPANE-DISSERTATION-2016.pdf (4.596Mb)
    Date
    2016-08
    Author
    Neupane, Prapti
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Coastal areas are regions of high population density and urbanization. These areas are highly vulnerable to inundation and flooding not only because of hurricane storm surge, but also because of the torrential rainfall that often accompanies hurricanes. In order to accurately predict the extent of damage such an event might cause, any model that is used to simulate this process needs to couple rainfall with storm surge. The works that have tried to address this issue have mostly used a unidirectional coupling technique, where one of the following two approaches is taken. In the first approach, a hydrology model is used in the domain of interest and storm surge is incorporated in the domain as a boundary condition. In the second approach, a storm surge model is used in the domain of interest and rainfall is incorporated in the domain as a river inflow boundary condition. Neither of these approaches allows the rainwater and the surge water to interact bidirectionally. In order to improve on those efforts, in this dissertation, we develop a comprehensive framework for modeling flooding in coastal watersheds. We present an approach to decompose a watershed into multiple sub-domains depending on the dynamics of flow in the region. We use different simplifications of the shallow water equations on different sub-domains to gain computational efficiency without compromising on physical accuracy. The different sub-domains are coupled with each other through numerical fluxes in a discontinuous Galerkin framework. This technique allows for a tight coupling of storm surge with rainfall runoff, so that the flooding that occurs is truly influenced by the nonlinear interaction of these two processes. We present numerical tests to validate and verify the methods used for modeling flow in different sub-domains as well as the techniques used for coupling different sub-domains with each other.
    Department
    Computational Science, Engineering, and Mathematics
    Subject
    Hurricane storm surge
    Rainfall runoff
    Flooding
    Discontinuous Galerkin method
    Computational hydrology
    Multi-dimensional model
    Shallow water equations
    URI
    http://hdl.handle.net/2152/41984
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin