TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Strength, stiffness, and damage of reinforced concrete buildings subjected to seismic motions

    Thumbnail
    View/Open
    KWON-DISSERTATION-2016.pdf (12.52Mb)
    Date
    2016-05
    Author
    Kwon, Jinhan
    0000-0002-8518-4464
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Current analytical tools were calibrated mainly using pseudo-static experimental investigations of individual structural components. Relatively few tests have been performed on reinforced concrete structural systems under realistic boundary conditions and even fewer exist that were conducted dynamically due to the high costs and experimental challenges. Thus, the structural engineering field has resorted to a number of extrapolations from limited test data to form analytical models of structural systems they design. It is therefore no surprise that blind prediction contest results for structural strength and deformation are typically several times higher and lower than those from experiments. A complete system of a full-scale, four-story, reinforced concrete structure was tested under increasing seismic excitations, to near collapse damage states, one the National Research Institute for Earth Science and Disaster Prevention (NIED)/E-Defense shaking table in Japan. A moment frame system was adopted in one direction and a pair of shear walls incorporated in the exterior frames in the other direction. Wherever possible, minor adjustments to the designs were made to bring the final structures closer to U.S. seismic design provisions. No other tests currently exist that provide behavioral data about a complete, seismically detailed, reinforced concrete structural system tested under such realistic boundary conditions. Comprehensive and in-depth analyses were performed in light of the NIED/E-Defense test data to 1) assess the validity of current behavioral knowledge and design codes; 2) to assess the accuracy of current analytical methods for this common type of structure; 3) to recommend improvements and ways forward on both fronts. Implications of test results to U.S. seismic provisions and recommendations for estimating structural strength and stiffness of reinforced concrete buildings were made based on comparison between the estimates from the current analytical methods and the actual seismic behavior of the NIED/E-Defense test data.
    Department
    Civil, Architectural, and Environmental Engineering
    Subject
    Reinforced concrete
    Building
    Stiffness
    Strength
    Damage
    Earthquake
    Loading rate
    Moment frames
    Shear walls
    Dynamic
    URI
    http://hdl.handle.net/2152/39606
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin