TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fault seal and containment failure analysis of a Lower Miocene structure in the San Luis Pass area, offshore Galveston Island, Texas inner shelf

    Thumbnail
    View/Open
    OSMOND-THESIS-2016.pdf (240.1Mb)
    Date
    2016-05
    Author
    Osmond, Johnathon Lee
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Faults that displace siliciclastic reservoirs have been observed to either seal hydrocarbon accumulations in structural traps or serve as conduits for buoyant fluid migration. While many faults located along the Texas Inner Shelf in the Gulf of Mexico do provide adequate lateral seals for the Lower Miocene petroleum system, oil and gas operators targeting the large antiformal structure roughly 7 mi offshore from San Luis Pass have been highly unsuccessful in discovering commercial amounts of methane gas. Images interpreted from 12 mi2 of high-resolution 3-D seismic reflection data (HR3D) has revealed an apparent gas chimney feature directly above the target structure that previously acquired lower-resolution conventional 3-D data failed to identify. Furthermore, the available seismic data show that the 55,000 foot-long normal growth fault displacing the San Luis Pass structure (Fault A) has propagated into the shallow Late Pleistocene (~140 ka) and younger sediment, suggesting recent movement of the hanging wall block has occurred. These three observations call into questions the ability for Fault A to properly seal and contain hydrocarbon accumulations, assuming the structure was sufficiently charged with methane, similarly to the surrounding Lower Miocene structures that have produced. An analysis of fault seal and potential containment failure mechanisms affecting the San Luis Pass structure is conducted here in order to address how hydrocarbons may have escaped into the shallow overburden sediments. 3-D geologic modeling of the Lower Miocene 2 (LM2) reservoir interval and Amph. B Shale top seal against Fault A yields fill-to-spill closure capacities of approximately 686 ft and 992 ft for the footwall and hanging wall closures, respectively. Fault seal membrane limited methane column height estimations are 300 ft and 325 ft from footwall to hanging wall, and were obtained by way of empirically calibrated equations that attempt to account for capillary entry properties of a fault through the estimation of its clay mineral content using the Shale Gouge Ratio (clay volume/fault throw). Although capacity estimations appear to be geologically reasonable in this region, they fail to explain the lack of hydrocarbons in the system, so four potential across-fault migration and leakage scenarios are considered for the purpose of determining pathways from the reservoir interval to the shallow subsurface. Areas where sandstone on sandstone juxtapositions generally pose the greatest risk of across-fault leakage, and 23 individual Lower Miocene 2 and Middle Miocene (MM) sandstone units juxtaposed against Fault A are evaluated. While the ability of Fault A to seal hydrocarbons may be feasible in static conditions, additional mechanisms evaluated using the available data include: top seal membrane leakage, top seal mechanical failure and fault reactivation mechanisms. Top seal thickness ranges between 500 ft and 1,000 ft in the study area, and analogous Lower Miocene mudstones are shown to retain methane columns of about 936 ft. Data limitations significantly reduce the ability to thoroughly investigate top seal mechanical failure and fault reactivation at this time, however, apparent vertical displacement measurements from overlapping seismic datasets suggest that movement along Fault A continued since it originally formed, and that two pulses of increased throw rate may have occurred in Early Miocene, and the Pleistocene. The apparent Pleistocene throw rates range from 0.010 mm/year to 0.125 mm/year, and are significant because the Early Miocene pulse occurred before the formation of the Amph. B top seal. Thus, it is interpreted that fault reactivation may represent the primary containment failure mechanism for the San Luis Pass structure, and that the increased apparent throw rate in the Pleistocene may symbolize a period of hydrocarbon leakage from the LM2 reservoir interval.
    Department
    Geological Sciences
    Subject
    San Luis Pass
    Galveston Island, Texas
    Petroleum geology
    Fault seals
    Containment failure
    Hydrocarbon reservoirs
    Petroleum traps
    Texas Gulf Coast
    Shale gouge ratio
    Fault seal
    3-d seismic
    Clemente-Tomas fault
    URI
    http://hdl.handle.net/2152/39533
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin