TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Testing for delay defects utilizing test data compression techniques

    Thumbnail
    View/Open
    putmanr34771.pdf (1.043Mb)
    Date
    2008-05
    Author
    Putman, Richard Dean, 1970-
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    As technology shrinks new types of defects are being discovered and new fault models are being created for those defects. Transition delay and path delay fault models are two such models that have been created, but they still fall short in that they are unable to obtain a high test coverage of smaller delay defects; these defects can cause functional behavior to fail and also indicate potential reliability issues. The first part of this dissertation addresses these problems by presenting an enhanced timing-based delay fault testing technique that incorporates the use of standard delay ATPG, along with timing information gathered from standard static timing analysis. Utilizing delay fault patterns typically increases the test data volume by 3-5X when compared to stuck-at patterns. Combined with the increase in test data volume associated with the increase in gate count that typically accompanies the miniaturization of technology, this adds up to a very large increase in test data volume that directly affect test time and thus the manufacturing cost. The second part of this dissertation presents a technique for improving test compression and reducing test data volume by using multiple expansion ratios while determining the configuration of the scan chains for each of the expansion ratios using a dependency analysis procedure that accounts for structural dependencies as well as free variable dependencies to improve the probability of detecting faults. Finally, this dissertation addresses the problem of unknown values (X’s) in the output response data corrupting the data and degrading the performance of the output response compactor and thus the overall amount of test compression. Four techniques are presented that focus on handling response data with large percentages of X’s. The first uses X-canceling MISR architecture that is based on deterministically observing scan cells, and the second is a hybrid approach that combines a simple X-masking scheme with the X-canceling MISR for further gains in test compression. The third and fourth techniques revolve around reiterative LFSR X-masking, which take advantage of LFSR-encoded masks that can be reused for multiple scan slices in novel ways.
    Department
    Electrical and Computer Engineering
    Description
    text
    URI
    http://hdl.handle.net/2152/3922
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin