TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    • Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A model for sealing plasmalemmal damage in neurons and other eukaryotic cells

    Thumbnail
    View/Open
    Bittner_JNeurosci_2010.pdf (1.503Mb)
    Date
    2010-11-24
    Author
    Spaeth, Christopher S.
    Boydston, Elaine A.
    Figard, Lauren R.
    Zuzek, Aleksej
    Bittner, George D.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Plasmalemmal repair is necessary for survival of damaged eukaryotic cells. Ca2 influx through plasmalemmal disruptions activates calpain, vesicle accumulation at lesion sites, and membrane fusion proteins; Ca2 influx also initiates competing apoptotic pathways. Using the formation of a dye barrier (seal) to assess plasmalemmal repair, we now report that B104 hippocampal cells with neurites transected nearer ( 50 m)to the soma seal at a lower frequency and slower rate compared to cells with neurites transected farther ( 50 m) from the soma. Analogs of cAMP, including protein kinase A (PKA)-specific and Epac-specific cAMP, each increase the frequency and rate of sealing and can even initiate sealing in the absence of Ca2 influx at both transection distances. Furthermore, Epac activates a cAMP-dependent, PKA-independent, pathway involved in plasmalemmal sealing. The frequency and rate of plasmalemmal sealing are decreased by a small molecule inhibitor of PKA targeted to its catalytic subunit (KT5720), a peptide inhibitor targeted to its regulatory subunits (PKI), an inhibitor of a novel PKC (an nPKC pseudosubstrate fragment), and an antioxidant (melatonin). Given these and other data, we propose a model for redundant parallel pathways of Ca2 -dependent plasmalemmal sealing of injured neurons mediated in part by nPKCs, cytosolic oxidation, and cAMP activation of PKA and Epac. We also propose that the evolutionary origin of these pathways and substances was to repair plasmalemmal damage in eukaryotic cells. Greater understanding of vesicle interactions, proteins, and pathways involved in plasmalemmal sealing should suggest novel neuroprotective treatments for traumatic nerve injuries and neurodegenerative disorders.
    Department
    Neuroscience
    Subject
    plasmalemmal repair
    URI
    http://hdl.handle.net/2152/37806
    xmlui.dri2xhtml.METS-1.0.item-citation
    C.S. Spaeth, E.A. Boydston, L.A. Figard, A. Zuzek and G.D. Bittner. 2010. A model for sealing plasmalemmal damage in neurons and other eukaryotic cells. J. Neurosci. 30:15790-15800. doi: 10.1523/JNEUROSCI.4155-10.2010. PubMed PMID: 21106818.
    Collections
    • UT Faculty/Researcher Works

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin