Show simple item record

dc.contributor.advisorYao, Zhen, Ph. D.en
dc.creatorLuo, Kang, 1976-en
dc.date.accessioned2008-08-29T00:07:39Zen
dc.date.available2008-08-29T00:07:39Zen
dc.date.issued2007-12en
dc.identifier.urihttp://hdl.handle.net/2152/3747en
dc.description.abstractElectron transport in nanoparticle single-electron transistors (SETs) is a fruitful method to explore a wide range of physical phenomena at the nanometer scale. In this thesis, we investigate electron transport in SETs incorporating various nanoparticles, including gold nanoparticles in both classical and quantum regimes and Pb nanoparticle in both superconducting and normal states. SETs have been successfully fabricated by incorporating individual gold nanoparticles into the gaps between two electrodes. Although single-electron tunneling behavior is prominent, quantized energy levels cannot be resolved in these SETs due to their relatively large particle sizes. A novel method has been developed to achieve SETs incorporating gold nanoparticles whose sizes are small enough to resolve discrete quantum energy levels. The devices consist of spontaneously-formed ultrasmall gold nanoparticles linked by alkanedithiols to gold electrodes. The devices reproducibly exhibit addition energies of a few hundred meV, which enables the observation of single electron tunneling at room temperature. At low temperatures, resonant tunneling through discrete energy levels in the Au nanoparticles is observed, which is accompanied by the excitations of molecular vibrations at large bias voltage. Having explored the SETs in normal state, we have extended the experiments to superconducting single-electron transistors (SSETs). We first fabricated and characterized Pb superconducting electrodes with nanometer-sized separation. Our observation clearly shows that conventional Barden-Cooper-Schrieffer theory remains valid to interpret the tunneling behavior between two nanometer-spaced Pb electrodes. Furthermore, by incorporating Pb nanoparticles between the two Pb electrodes, we have fabricated SSETs and investigated the transport properties of these devices. In the superconducting state, the conductance is suppressed by a combination of the single electron tunneling effect and the absence of density of states within the superconducting gap. In the suppression regime, the tunneling spectroscopy shows current features that arise from quasiparticle tunneling caused by singularity matching. At low temperature, the features can only be observed for odd charge states in SSETs. At high temperature, the odd-even parity effect is smeared out. Upon application of a magnetic field, the superconducting state is suppressed and single-electron tunneling behavior for normal metallic nanoparticles is recovered.en
dc.format.mediumelectronicen
dc.language.isoengen
dc.rightsCopyright © is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshTransistors--Designen
dc.subject.lcshElectron transporten
dc.subject.lcshNanoparticlesen
dc.subject.lcshTunneling (Physics)en
dc.subject.lcshElectrodesen
dc.subject.lcshGold--Industrial applicationsen
dc.subject.lcshLead--Industrial applicationsen
dc.titleElectron transport in nanoparticle single-electron transistorsen
dc.description.departmentPhysicsen
dc.identifier.oclc212625681en
dc.type.genreThesisen
thesis.degree.departmentPhysicsen
thesis.degree.disciplinePhysicsen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record