• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Communities
    • Cockrell School of Engineering
    • International Center for Aggregates Research (ICAR)
    • ICAR Technical Reports
    • View Item
    • Repository Home
    • UT Communities
    • Cockrell School of Engineering
    • International Center for Aggregates Research (ICAR)
    • ICAR Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Superpave Fine Aggregate Angularity Specification

    Icon
    View/Open
    ICAR-201-1 (1.783Mb)
    Date
    2001-05
    Author
    Chowdhury, Arif
    Button, Joe W.
    Kohale, Vipin
    Jahn, David W.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The validity of the Superpave fine aggregate angularity (FAA) requirement is questioned by both the owner agencies and the paving and aggregate industries. The FAA test is based on the assumption that more fractured faces will result in higher void content in the loosely compacted sample; however, this assumption is not always true. Some agencies have found that cubical shaped particles, even with 100 percent fractured faces, may not meet the FAA requirement for high-volume traffic. State agencies are concerned that local materials, previously considered acceptable and which have provided good field performance, cannot meet the Superpave requirements. Researchers evaluated angularity of 23 fine aggregates representing most types of paving aggregates used in the USA using seven different procedures: FAA test, direct shear test, compacted aggregate resistance (CAR) test, three different image analyses, and visual inspection. The three image analyses techniques included Hough Transform at University of Arkansas at Little Rock (UALR), unified image analysis at Washington State University (WSU), and VDG-40 videograder at Virginia Transportation Research Council (VTRC). A small study was performed to evaluate relative rutting resistance of HMA containing fines with different particle shape parameters using the Asphalt Pavement Analyzer (APA). The FAA test method does not consistently identify angular, cubical aggregates as high quality materials. There is a fair correlation between the CAR stability value and angle of internal friction (AIF) from the direct shear test. No correlation was found between FAA and CAR stability or between FAA and AIF. Fairly good correlations were found between FAA and all three image analysis methods. Some cubical crushed aggregates with FAA values less than 45 gave very high values of CAR stability, AIF, and ‘angularity’ from imaging techniques. Moreover, the three image analysis methods exhibited good correlation among themselves. A statistical analysis of the SHRP-LTPP (Strategic Highway Research Program-Long-Term Pavement Performance) database revealed no significant evidence relationship between FAA and rutting. This lack of relationship is not surprising since many uncontrolled factors contribute to pavement rutting. The APA study revealed that FAA is not sensitive to rut resistance of HMA mixtures. Image analysis methods appear promising for measuring fine aggregate angularity. Until a suitable replacement method(s) for FAA can be identified, the authors recommend that the FAA criteria be lowered from 45 to 43 for 100 percent crushed aggregate. Analysis of the FAA versus rutting data should be examined later as the amount of data in the SHRP-LTTP database is expanded.
    Department
    Civil, Architectural, and Environmental Engineering
    Subject
    Air voids
    Angularity
    Databases
    Evaluation
    Fine aggregates
    Image analysis
    Inspection
    Ruts (Pavements)
    Shear tests
    Superpave
    Tests
    URI
    http://hdl.handle.net/2152/35394
    Collections
    • ICAR Technical Reports
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin