• Login
    • Submit
    View Item 
    •   Repository Home
    • Student Works
    • Honors Theses
    • View Item
    • Repository Home
    • Student Works
    • Honors Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Influence of Body Size and Hemoglobin Multiplicity on Critical Oxygen Threshold in Red Drum (Sciaenops ocellatus)

    Icon
    View/Open
    Thesis_Yihang_Pan.pdf (1.066Mb)
    Date
    2016-05
    Author
    Pan, Yihang
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Hypoxia is common in marine environments and fishes use a suite of cardiorespiratory adjustments to defend aerobic metabolism, including reducing standard metabolic rate (SMR), the minimum metabolic rate needed to sustain life at a specified temperature, or increasing hemoglobin (Hb)-O2 affinity. Nonetheless, hypoxia can constrain oxygen transport whereby fish cannot accommodate standard metabolic rate; a point known as critical oxygen tension (Pcrit). Currently, it is unclear how life history traits may impact Pcrit, but available data on red drum (Sciaenops ocellatus) suggest that its SMR decreases with size, and its transcriptome contains multiple Hb-α and Hb-β subunits. Therefore we sought to explore the influence of body size and acclimation to hypoxia. Critical oxygen tension (Pcrit) was measured for fish over a 2500-fold range in mass (0.26 - 686 g) and surprisingly showed an increase (Pcrit = 3.15 logM + 16.19; R2 = 0.44) despite decreasing SMR. Two groups of S. ocellatus (90.96 ± 5.00 g ranging from 69.7 g to 141.9 g) were also subjected to either normoxia ( > 95% P_(O_2 )) or hypoxia (30%±5% P_(O_2 )) treatment for two weeks. Only fish subjected to hypoxia treatment showed a statistically significant decrease in Pcrit after the treatment. Acclimation had no impact on gill surface area, diffusion distance or relative ventricular mass, but mRNA expression levels of the major Hb-α subunit switched from Hbα-3.1 in the normoxia group to Hbα-3.2 in the hypoxia treatment group and expression levels of Hbα-2, Hbα-3.2 and Hbβ-3.1 showed a statistically significant increase in the hypoxia treatment group. Decrease in P50 and thus an increase in Hb-O2 binding affinity was observed for fish subjected to hypoxia treatment. Taken together these data indicate that hypoxia tolerance is affected by both developmental stage and hypoxia acclimation.
    Department
    Integrative Biology
    Subject
    Hypoxia
    tolerance
    critical oxygen threshold
    standard metabolic rate
    hemoglobin
    size
    URI
    http://hdl.handle.net/2152/35297
    Collections
    • Honors Theses
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin