Show simple item record

dc.creatorChatzopoulos, Emmanouilen_US
dc.creatorWheeler, J. Craigen_US
dc.creatorVinko, Jozsefen_US
dc.date.accessioned2016-04-28T19:35:19Z
dc.date.available2016-04-28T19:35:19Z
dc.date.issued2009-10en
dc.identifierdoi:10.15781/T2P801
dc.identifier.citationChatzopoulos, Emmanouil, J. Craig Wheeler, and Jozsef Vinko. "Modeling the light curve of the transient SCP06F6." The Astrophysical Journal, Vol. 704, No. 2 (Oct., 2009): 1251.en_US
dc.identifier.issn0004-637Xen_US
dc.identifier.urihttp://hdl.handle.net/2152/34829
dc.description.abstractWe consider simple models based on core collapse or pair-formation supernovae (SNe) to account for the light curve of the transient SCP06F6. A radioactive decay diffusion model provides estimates of the mass of the required radioactive nickel and the ejecta as functions of the unknown redshift. An opacity change such as by dust formation or a recombination front may account for the rapid decline from maximum. Within this class of model, the redshift must be less than z similar to 1 or the nickel mass would exceed the total mass of the ejecta; the radiated energy would exceed the kinetic energy, and kinematic and photometric estimates of the radius would disagree. We particularly investigate two specific redshifts: z = 0.143, for which Gaensicke et al. have proposed that the unidentified broad absorption features in the spectrum of SCP06F6 are C(2) Swan bands, and z = 0.57 based on a crude agreement with the Ca H& K and UV iron-peak absorption features that are characteristic of SNe of various types. For the lower redshift, we obtain a nickel mass of 0.3 M(circle dot) and an ejected envelope mass of similar to 38 M(circle dot), while for the latter case we find 4.8 M(circle dot) and 20 M(circle dot), respectively, for fiducial parameters. The kinetic energy of the ejecta, while dependent on uncertain parameters, is generally large, similar to 10(52) erg, throughout this range of redshift. The ejected masses and kinetic energies are smaller for a more tightly constrained model invoking envelope recombination. We also discuss the possibilities of circumstellar matter (CSM) shell diffusion and shock interaction models. In general, optically thick CSM diffusion models can fit the data with the underlying energy coming from an energetic buried SN. Models in which the CSM is of lower density so that the shock energy is both rapidly thermalized and radiated tend not to be self-consistent. We suggest that a model of SCP06F6 worth further exploration is one in which the redshift is similar to 0.57, the spectral features are Ca and iron-peak elements, and the light curve is powered by the diffusive release of a substantial amount of energy from nickel decay or from an energetic SN buried in the ejecta of an LBV-like event.en_US
dc.description.sponsorshipNSF AST-0707669en_US
dc.description.sponsorshipTexas Advanced Research Program ASTRO-ARP-0094en_US
dc.description.sponsorshipHungarian OTKA Grant K76816en_US
dc.language.isoEnglishen_US
dc.relation.ispartofen_US
dc.rightsAdministrative deposit of works to Texas ScholarWorks: This works author(s) is or was a University faculty member, student or staff member; this article is already available through open access or the publisher allows a PDF version of the article to be freely posted online. The library makes the deposit as a matter of fair use (for scholarly, educational, and research purposes), and to preserve the work and further secure public access to the works of the University.en_US
dc.subjectcircumstellar matteren_US
dc.subjecthydrodynamicsen_US
dc.subjectstars: evolutionen_US
dc.subjectsupernovae:en_US
dc.subjectgeneralen_US
dc.subjectsupernovae: individual (snscp06f6)en_US
dc.subjecti super-novaeen_US
dc.subjectluminous supernovaen_US
dc.subjecteta-carinaeen_US
dc.subjectexplosionen_US
dc.subjectultravioleten_US
dc.subjectdiscoveryen_US
dc.subjectsn-2006gyen_US
dc.subject2008esen_US
dc.subjectstarsen_US
dc.subject1987aen_US
dc.subjectastronomy & astrophysicsen_US
dc.titleModeling The Light Curve Of The Transient Scp06F6en_US
dc.typeArticleen_US
dc.description.departmentAstronomyen_US
dc.identifier.Filename2009_10_scp06f6.pdfen_US
dc.rights.restrictionOpenen_US
dc.identifier.doi10.1088/0004-637x/704/2/1251en_US
dc.contributor.utaustinauthorChatzopoulos, Emmanouilen_US
dc.contributor.utaustinauthorWheeler, J. Craigen_US
dc.contributor.utaustinauthorVinko, Jozsefen_US
dc.relation.ispartofserialAstrophysical Journalen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record