The Relation Between Star Formation Rate And Stellar Mass For Galaxies At 3.5 <= Z <= 6.5 In CANDELS
Abstract
Distant star-forming galaxies show a correlation between their star formation rates (SFRs) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at 3.5 <= z <= 6.5 using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust-attenuation prescriptions (starburst and Small Magellanic Cloud). From z = 6.5 to z = 3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR similar to M-a* with a = 0.54 +/- 0.16 at z similar to 6 and 0.70 +/- 0.21 at z similar to 4. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, sigma(log SFR/M-circle dot yr(-1)) < 0.3-0.4 dex, for galaxies with log M*/M-circle dot > 9 dex. Assuming that the SFR is tied to the net gas inflow rate (SFR similar to M-circle dot gas), then the scatter in the gas inflow rate is also smaller than 0.3-0.4 dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation.
Department
Subject
galaxies: distances and redshifts
galaxies: evolution
galaxies:
fundamental parameters
magellanic clouds
lyman-break galaxies
high-redshift galaxies
cosmological hydrodynamic
simulations
spectral energy-distributions
emission-line galaxies
active galactic nuclei
broad-band photometry
ultraviolet luminosity
density
extragalactic legacy survey
near-infrared spectroscopy
astronomy & astrophysics
galaxies: evolution
galaxies:
fundamental parameters
magellanic clouds
lyman-break galaxies
high-redshift galaxies
cosmological hydrodynamic
simulations
spectral energy-distributions
emission-line galaxies
active galactic nuclei
broad-band photometry
ultraviolet luminosity
density
extragalactic legacy survey
near-infrared spectroscopy
astronomy & astrophysics
Collections
Related items
Showing items related by title, author, creator and subject.
-
CANDELS Observations Of The Structural Properties Of Cluster Galaxies At Z=1.62
Papovich, Casey; Bassett, Robert; Lotz, Jennifer M.; van der Wel, A.; Tran, K. V.; Finkelstein, Steven L.; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Dunlop, J. S.; Guo, Y. C.; Faber, S. M.; Farrah, D.; Ferguson, Henry C.; Finkelstein, Keely D.; Haussler, Boris; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.; McLure, R. J.; McIntosh, Daniel H.; Momcheva, I.; Newman, Jeffrey A.; Rudnick, Gregory; Weiner, B.; Willmer, Christopher N. A.; Wuyts, S. (2012-05)We discuss the structural and morphological properties of galaxies in a z = 1.62 proto-cluster using near-IR imaging data from Hubble Space Telescope Wide Field Camera 3 data of the Cosmic Assembly Near-IR Deep Extragalactic ... -
Galaxy Evolution In A Complex Environment: A Multi-Wavelength Study Of HCG 7
Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Heiderman, Amanda; Elmegreen, D. M.; Charlton, J. C.; Hibbard, J. E.; Tzanavaris, P.; Chandar, R.; Johnson, K. E.; Maybhate, A.; Zabludoff, A. E.; Gronwall, Caryl; Szathmary, D.; Hornschemeier, Ann E.; English, J.; Whitmore, B.; de Oliveira, C. M.; Mulchaey, J. S. (2010-11)The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. ... -
The Hubble Space Telescope Advanced Camera for Surveys Coma Cluster Survey. I. Survey Objectives and Design
Carter, David; Goudfrooij, Paul; Mobasher, Bahram; Ferguson, Henry C.; Puzia, Thomas H.; Aguerri, Alfonso L.; Balcells, Marc; Batcheldor, Dan; Bridges, Terry J.; Davies, Jonathan I.; Erwin, Peter; Graham, Alister W.; Guzman, Rafael; Hammer, Derek; Hornschemeier, Ann; Hoyos, Carlos; Hudson, Michael J.; Huxor, Avon; Jogee, Shardha; Komiyama, Yutaka; Lotz, Jennifer; Lucey, John R.; Marzke, Ronald O.; Merritt, David; Miller, Bryan W.; Miller, Neal A.; Mouhcine, Mustapha; Okamura, Sadanori; Peletier, Reynier F.; Phillipps, Steven; Poggianti, Bianca M.; Sharples, Ray M.; Smith, Russell J.; Trentham, Neil; Tully, R. Brent; Valentijn, Edwin; Kleijn, Gijs Verdoes (2008-06)We describe the HST ACS Coma Cluster Treasury survey, a deep two-passband imaging survey of one of the nearest rich clusters of galaxies, the Coma Cluster (Abell 1656). The survey was designed to cover an area of 740 ...