TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    • Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Role Of Bulge Formation In The Homogenization Of Stellar Populations At Z Similar To 2 As Revealed By Internal Color Dispersion In CANDELS

    Thumbnail
    View/Open
    2015_04_rolebulge.pdf (2.728Mb)
    Date
    2015-04
    Author
    Boada, Steven
    Tilvi, Vithal
    Papovich, Casey
    Quadri, R. F.
    Hilton, M.
    Finkelstein, Steven L.
    Guo, Y. C.
    Bond, N.
    Conselice, C.
    Dekel, Avishai
    Ferguson, H.
    Giavalisco, Mauro
    Grogin, N. A.
    Kocevski, D. D.
    Koekemoer, A. M.
    Koo, D. C.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    We use data from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey to study how the spatial variation in the stellar populations of galaxies relates to the formation of galaxies at 1.5 < z < 3.5. We use the internal color dispersion (ICD), measured between the rest-frame UV and optical bands, which is sensitive to age (and dust attenuation) variations in stellar populations. The ICD shows a relation with the stellar masses and morphologies of the galaxies. Galaxies with the largest variation in their stellar populations as evidenced by high ICD have disk-dominated morphologies (with Sersic indexes < 2) and stellar masses between 10 < log (M/M-circle dot) < 11. There is a marked decrease in the ICD as the stellar mass and/or the Sersic index increases. By studying the relations between the ICD and other galaxy properties including size, total color, star formation rate, and dust attenuation, we conclude that the largest variations in stellar populations occur in galaxies where the light from newly, high star-forming clumps contrasts older stellar disk populations. This phase reaches a peak for galaxies only with a specific stellar mass range, 10 < log (M/M-circle dot) < 11, and prior to the formation of a substantial bulge/spheroid. In contrast, galaxies at higher or lower stellar masses and/or higher Sersic index (n > 2) show reduced ICD values, implying a greater homogeneity of their stellar populations. This indicates that if a galaxy is to have a quiescent bulge along with a star-forming disk, typical of Hubble sequence galaxies, this is most common for stellar masses 10 < log (M/M-circle dot) < 11 and when the bulge component remains relatively small (n < 2).
    Department
    Astronomy
    Subject
    galaxies: evolution
    galaxies: general
    galaxies: stellar content
    galaxies: structure
    star-forming galaxies
    ultra deep field
    spectral energy-distributions
    extragalactic legacy survey
    kiloparsec-scale clumps
    lyman break
    galaxies
    massive galaxies
    hubble sequence
    camera 3
    photometric
    redshifts
    astronomy & astrophysics
    URI
    http://hdl.handle.net/2152/34696
    xmlui.dri2xhtml.METS-1.0.item-citation
    Boada, Steven, V. Tilvi, C. Papovich, R. F. Quadri, M. Hilton, S. Finkelstein, Yicheng Guo et al. "The Role of Bulge Formation in the Homogenization of Stellar Populations at z~ 2 as revealed by Internal Color Dispersion in CANDELS." The Astrophysical Journal, Vol. 803, No. 2 (Apr., 2015): 104.
    Collections
    • UT Faculty/Researcher Works

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      CANDELS Observations Of The Structural Properties Of Cluster Galaxies At Z=1.62 

      Papovich, Casey; Bassett, Robert; Lotz, Jennifer M.; van der Wel, A.; Tran, K. V.; Finkelstein, Steven L.; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Dunlop, J. S.; Guo, Y. C.; Faber, S. M.; Farrah, D.; Ferguson, Henry C.; Finkelstein, Keely D.; Haussler, Boris; Kocevski, D. D.; Koekemoer, A. M.; Koo, D. C.; McGrath, E. J.; McLure, R. J.; McIntosh, Daniel H.; Momcheva, I.; Newman, Jeffrey A.; Rudnick, Gregory; Weiner, B.; Willmer, Christopher N. A.; Wuyts, S. (2012-05)
      We discuss the structural and morphological properties of galaxies in a z = 1.62 proto-cluster using near-IR imaging data from Hubble Space Telescope Wide Field Camera 3 data of the Cosmic Assembly Near-IR Deep Extragalactic ...
    • Thumbnail

      The Hubble Space Telescope Advanced Camera for Surveys Coma Cluster Survey. I. Survey Objectives and Design 

      Carter, David; Goudfrooij, Paul; Mobasher, Bahram; Ferguson, Henry C.; Puzia, Thomas H.; Aguerri, Alfonso L.; Balcells, Marc; Batcheldor, Dan; Bridges, Terry J.; Davies, Jonathan I.; Erwin, Peter; Graham, Alister W.; Guzman, Rafael; Hammer, Derek; Hornschemeier, Ann; Hoyos, Carlos; Hudson, Michael J.; Huxor, Avon; Jogee, Shardha; Komiyama, Yutaka; Lotz, Jennifer; Lucey, John R.; Marzke, Ronald O.; Merritt, David; Miller, Bryan W.; Miller, Neal A.; Mouhcine, Mustapha; Okamura, Sadanori; Peletier, Reynier F.; Phillipps, Steven; Poggianti, Bianca M.; Sharples, Ray M.; Smith, Russell J.; Trentham, Neil; Tully, R. Brent; Valentijn, Edwin; Kleijn, Gijs Verdoes (2008-06)
      We describe the HST ACS Coma Cluster Treasury survey, a deep two-passband imaging survey of one of the nearest rich clusters of galaxies, the Coma Cluster (Abell 1656). The survey was designed to cover an area of 740 ...
    • Thumbnail

      Demographics of Bulge Types Within 11 Mpc and Implications for Galaxy Evolution 

      Fisher, David B.; Drory, Niv (2011-06)
      We present an inventory of galaxy bulge types (elliptical galaxy, classical bulge, pseudobulge, and bulgeless galaxy) in a volume-limited sample within the local 11 Mpc sphere using Spitzer 3.6 mu m and Hubble Space Telescope ...

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin