TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-frac propagation in unconventional shale

    Thumbnail
    View/Open
    ASIAMAH-THESIS-2015.pdf (9.993Mb)
    Date
    2015-12
    Author
    Asiamah, Nana Kwadwo Sasu
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    In recent years, the Zipper-Frac technique has become one of the most widely used stimulation techniques in the oil and gas industry. The efficiency in this technique lies in minimizing stress shadows between adjacent stimulated fractures while maximizing fracture network and surface area in order to increase fluid production. The Zipper-Frac technique stimulates two parallel horizontally drilled wellbores, alternating between perforation clusters, while maintaining pressure in the previously fractured wellbore or perforation cluster. This study analyzes and discusses multi-fracture experiments in the laboratory that mimic Zipper-Frac results in unconventional shale. The experiments were conducted with two intended outcomes: (i) to examine how time-dependent pressure decay limits stress shadow effects and (ii) to investigate fracture complexity developed in Zipper-Fracs. To achieve these objectives, laboratory experiments were conducted on synthetic blocks (gypsum cement) of three layers (hydrostone, plaster and hydrostone, respectively). The experiment was conducted on 12 samples. Six samples were fractured with a pressure hold-up technique, where the in-situ stress after fracturing was above the fracture closure stress (FCS); and the other six were fractured with a pressure bleed-off technique, where the pressure was bled-off below the FCS. The results indicate is that greater well spacing and bleeding off pressure in fractures post-treatment result in longer and straighter fractures, hence minimal stress shadow, while closer well spacing and maintaining pressure in fractures post-treatment caused more non-planar fracture paths and less created fracture length, hence stronger stress shadow. Consequently, it can be inferred that less complexity would result with the bleed-off method, but this gives greater fracture surface area because of the greater achieved lengths.
    Department
    Petroleum and Geosystems Engineering
    Subject
    Pressure hold-up
    Bleed-off
    Complexity
    Fractures
    Synthetic
    Perforation
    URI
    http://hdl.handle.net/2152/34266
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin