• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The enriched Galerkin method for linear elasticity and phase field fracture propagation

    Icon
    View/Open
    MITAL-THESIS-2015.pdf (5.225Mb)
    Date
    2015-12
    Author
    Mital, Prashant
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This thesis focuses on the application of the discontinuous Galerkin (DG) and enriched Galerkin (EG) methods to the problems of linear elasticity and phase field fracture propagation. The use of traditional and popular continuous Galerkin method (CG) for linear elasticity has posed some challenges. For example, nonphysical stress oscillations often occur in CG solutions for linearly elastic, nearly incompressible materials. Furthermore, CG solutions produce discontinuous stresses at the finite element boundaries which need to be post-processed. Based on the success of the DG methods in solving these challenges, we attempt resolution of the same problems with the yet untested EG method. For phase field fracture propagation, the CG method has been ubiquitously used in the literature. Since the phase field displacement solution is essentially discontinuous across the crack, we hypothesize that the discontinuous DG and EG methods could offer some advantages when applied to the fracture problem. We then perform a comparative analysis of CG, DG and EG applied to the phase field equations to determine if this is indeed the case. We begin by applying a family of DG and EG methods, including Nonsymmetric Interior Penalty Galerkin (NIPG), Symmetric Interior Penalty Galerkin (SIPG), and Incomplete Interior Penalty Galerkin (IIPG) to 2D linear elasticity problems. It is shown that the EG methods are simple and robust for dealing with linear elasticity. They are also shown to converge at the same rates as the corresponding DG methods. A detailed comparison of the performance of NIPG, IIPG, and SIPG is also made. We then propose a novel monolithic scheme with an augmented-Lagrangian method for phase field fracture propagation. We apply CG, DG and EG methods to the scheme and establish convergence in space and time through numerical studies. It is shown that the Newton method used for solving the system of nonlinear equations converges faster for DG and EG than it does for CG.
    Department
    Engineering Mechanics
    Subject
    Enriched Galerkin
    Phase field
    Fracture
    Fracture propagation
    Linear elasticity
    Discontinuous Galerkin
    URI
    http://hdl.handle.net/2152/34222
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin