TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ligand-immobilized biomaterial surfaces for Notch signaling and T cell differentiation

    Thumbnail
    View/Open
    kim_dissertation_20129.pdf (2.792Mb)
    Date
    2012-12
    Author
    Kim, Myunghee Michelle
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    In vitro T cell differentiation from hematopoietic progenitor cells is a potential alternative source of T cells for adoptive therapy in treatment of cancers as well as T cell deficiencies. Presentation of Notch ligands immobilized on a surface is necessary in designing a stroma-free in vitro T cell differentiation system. Current methods for in vitro T cell differentiation have advanced greatly in the recent years, allowing development of functional T cells in vitro. However, these are limited to 2D coculture with stromal cells or culture on hard plastic surfaces with immobilized ligands, and have yet to report quantitative effects of variables such as substrate stiffness. This dissertation discusses the fabrication of 2D and 3D systems of various properties for presentation of Notch ligands for development of an efficient culture system, at the same time offering insight into the science of cell signaling and cell-material interactions. Magnetic microbeads, liposomes, as well as 2D and 3D soft hydrogel surfaces were fabricated to present Notch ligands at varying ligand densities and to study their quantitative effect on Notch signaling and T cell differentiation. The x findings of this dissertation demonstrate that substrate material plays a role in Notch signaling in combination with ligand density, and may affect downstream events of T lineage commitment. Insights gained from this research provide a new direction in the importance of culture substrate in ligand-presenting systems and allow development of new systems to support efficient generation of T cells in vitro.
    Department
    Biomedical Engineering
    Subject
    Notch
    Biomaterial
    T cell
    Hematopoietic stem cell
    URI
    http://hdl.handle.net/2152/32909
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin