(Vol.10, 2007-12) Pollen Morphology and Ultrastructure of Calyceraceae

Access full-text files

Date

2007-12

Authors

DeVore, Melanie L.
Zhao, Zaiming
Jansen, Robert K.
Skvarla, John J.

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Pollen morphology of 13 species from all six genera of Calyceraceae (Acicarpha, Boopis, Calycera, Gamocarpha, Moschopsis, and Nastanthus) and representatives of the Campanulaceae and Goodeniaceae is examined with light (LM), scanning (SEM), and transmission (TEM) electron microscopy. Acicarpha, Calycera, and Nastanthus pollen grains are distinguished by angulaperturate apertures, colpar ledges and surface depressions between colpi known as intercolpar concavities (IC). Pollen of Gamocarpha and Moschopsis is tricolporate rather than angulaperturate and without an IC. Some species of Boopis are similar to the preceding genera (e.g., B. graminea), while others (e.g., B. gracilis) are angulaperturate with ICs. Structural features derived from fractured pollen in SEM and sections in TEM show pollen walls composed of prominent columellae ca. 0.55–1.1 mm high and ,0.25 mm wide. The columellae terminate distally into a complex of shortened columellae ca. 1.5 mm in length and are separated by an illdefined irregular internal tectum layer. This structural complex is well known in several tribes of the Asteraceae and referred to as the Anthemoid type. In those grains with an IC, the structure consists of essentially short (ca. 1 mm), unbranched columellae, similar to those found within the Asteraceae subfamily Barnadesioideae (Dasyphyllum and Schlechtendalia). Goodeniaceae (including Brunonia) pollen has angulaperturate apertures, spinules (i.e., minute spines), problematic IC and some structural similarity to Calyceraceae pollen. The tendency within Calyceraceae to develop colpar ledges, ektexine bridges, and ICs may be a synapomorphy uniting the family with Goodeniaceae. If the ancestral pollen type for the Calyceraceae, Asteraceae, and Goodeniaceae clade is the Gamocarpha type (convex intercolpar regions; no colpar ledges and no ektexine bridges), then the appearance of these structures within each family may be a synapomorphy supporting their close phylogenetic relationship suggested by molecular analyses.

Description

LCSH Subject Headings

Citation

Collections