TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive measure-theoretic parameter estimation for coastal ocean modeling

    Thumbnail
    View/Open
    GRAHAM-DISSERTATION-2015.pdf (18.03Mb)
    Date
    2015-08
    Author
    Graham, Lindley Christin
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Since Hurricane Katrina (2005), there has been a marked increase in the quantity of field observations gathered during and after hurricanes. There has also been an increased effort to improve our ability to model hurricanes and other coastal ocean phenomena. The majority of death and destruction due to a hurricane is from storm surge. The primary controlling factor in storm surge is the balance between the surface stress due to the wind and bottom stress. Manning's formula can be used to model the bottom stress; the formula includes the Manning's n coefficient which accounts for momentum loss due to bottom roughness and is a spatially dependent field. It is impractical to measure Manning's n over large physical domains. Instead, given a computational storm surge model and a set of model observations, one may formulate and solve an inverse problem to determine probable Manning's n fields using observational data, which in turn can be used for predictive simulations. On land, Manning's n may be inferred from land cover classification maps. We leverage existing land cover classification data to determine the spatial distribution of land cover classifications which we consider certain. These classifications can be used to obtain a parameterized mesoscale representation of the Manning's n field. We seek to estimate the Manning's n coefficients for this parameterized field. The inverse problem we solve is formulated using a measure-theoretic approach; using the ADvanced CIRCulation model for coastal and estuarine waters as the forward model of storm surge. The uncertainty in observational data is described as a probability measure on the data space. The solution to the inverse problem is a non-parametric probability measure on the parameter space. The goal is to use this solution in order to measure the probability of arbitrary events in the parameter space. In the cases studied here the dimension of the data space is smaller than the dimension of the parameter space. Thus, the inverse of a fixed datum is generally a set of values in parameter space. The advantage of using the measure-theoretic approach is that it preserves the geometric relation between the data space and the parameter space within the probability measure. Solving an inverse problem often involves the exploration of a high-dimensional parameter space requiring numerous expensive forward model solves. We use adaptive algorithms for solving the stochastic inverse problem to reduce error in the estimated probability of implicitly defined parameter events while minimizing the number of forward model solves.
    Department
    Computational Science, Engineering, and Mathematics
    Description
    text
    Subject
    Manning’s n coefficient
    Measure theory
    Parameter estimation
    Set-valued inverse solutions
    Shallow water equations
    Stochastic inverse problems
    URI
    http://hdl.handle.net/2152/32435
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin