• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Validation of a reduced-complexity numerical model for resolving deltaic dynamics : internal consistency and morphodynamics

    Icon
    View/Open
    VANDYK-THESIS-2015.pdf (3.481Mb)
    Date
    2015-05
    Author
    Van Dyk, Corey John
    0000-0002-8161-5044
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    River deltas are fragile ecosystems that have immense ecological, economic, and social importance. The ability to understand them is facilitated by numerical models that can resolve the complex hydrodynamics and morphodynamics of deltas. DeltaRCM is one such model, and to validate its behavior, internal consistency is tested with variable input parameters; results indicate realistic growth with predictable patterns. The morphodynamics are tested against experimental and real deltas with the use of metrics: specifically, delta growth metrics like shoreline-to-area ratio and relative shoreline roughness, channel overlap, and avulsion behavior. DeltaRCM performs very well when compared to real systems with growth rate and relative shoreline roughness, and fairly well for shoreline-to-area ratio. The channel overlap metric suggests DeltaRCM displays a slightly higher degree of channel stability than an experimental delta, though the general trend of memory decay remains the same. A similar link exists between DeltaRCM and reality for the wetted fraction, in that general trends are similar but comparison breaks down at finer scales. Furthermore, based on DeltaRCM results, wetted fraction is an imperfect tool for determining avulsion timescale. A new metric, the sedimentograph, is introduced as a way of describing delta growth at the subsurface level; DeltaRCM gives reasonable results for this metric, though comparison to real systems is difficult.
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    River delta
    Numerical model
    Reduced-complexity
    Coastal change
    Morphodynamics
    Metrics
    URI
    http://hdl.handle.net/2152/31781
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin