TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The molecular chaperone Skp reduces client protein aggregation under in vivo-like conditions

    Thumbnail
    View/Open
    BOGARDUS-THESIS-2015.pdf (877.9Kb)
    Date
    2015-05
    Author
    Bogardus, Elizabeth H.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Recombinant proteins form the basis of a vibrant biotechnology industry, acting as key players in therapeutics, reagents and diagnostics.1 However, multi-chain proteins are hard to produce efficiently.1 The yield of recombinant proteins can be improved by co-expression of folding factors with the target protein.2 Co-expression with folding factors has been met with some success.2 However, deeper knowledge about the folding factors and the ways in which they interact with each other will ultimately improve expression of proteins. The bacterial seventeen kilodalton protein (Skp) has been exploited to prevent aggregation of recombinant proteins in the bacterial periplasm.3 While the interactions between Skp and its client proteins have been studied in vitro, the more relevant in vivo interactions have not, nor has its relationship to the other protein folding molecules in the bacterial periplasm. In particular, the order of interactions between Skp and the Disulfide bond isomerases A and C (DsbA, DsbC) is unclear. To address this knowledge gap, the effect of Skp on substrate protein aggregation was observed under in vivo-like conditions as a step towards analyzing the effect of Skp in vivo. The effect of Skp on aggregation was reduced under in vivo-like conditions as compared to dilute in vitro experiments. The order of interaction between Skp, DsbA and DsbC on a substrate protein was observed. In the first experiment, the effect of the combination of Skp with DsbA and Skp with DsbC on the aggregation of lysozyme was observed. The greatest reduction in the aggregation of lysozyme was due to the addition of Skp with either DsbA or DsbC. In the second experiment, the order of interaction between Skp, DsbA and DsbC was assayed but no clear conclusion could be drawn. These insights will contribute to the understanding of protein expression in the bacterial periplasm.
    Department
    Biochemistry
    Description
    text
    Subject
    Periplasmic space
    Protein folding
    URI
    http://hdl.handle.net/2152/31747
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin