TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transportation planning via location-based social networking data : exploring many-to-many connections

    Thumbnail
    View/Open
    CEBELAK-DISSERTATION-2015.pdf (12.81Mb)
    Date
    2015-08
    Author
    Cebelak, Meredith Kimberly
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Today’s metropolitan areas see changes in populations and land development occurring at faster rates than transportation planning can be updated. This dissertation explores the use of a new dataset from the location-based social networking spectrum to analyze origin-destination travel demand within Austin, TX. A detailed exploration of the proposed data source is conducted to determine its overall capabilities with respect to the Austin area demographics. A new methodology is proposed for the creation of origin-destination matrices using a peer-to-peer modeling structure. This methodology is compared against a previously examined and more traditional approach, the doubly-constrained gravity model, to understand the capabilities of both models with various friction functions. Each method is examined within the constructs of the study area’s existing origin-destination matrix by examining the coincidence ratios, mean errors, mean absolute errors, frequency ratios, swap ratios, trip length distributions, zonal trip generation and attraction heat maps, and zonal origin-destination flow patterns. Through multiple measures, this dissertation provides initial interpretations of the robust Foursquare data collected for the Austin area. Based upon the data analytics performed, the Foursquare data source is shown to be capable of providing immensely detailed spatial-temporal data that can be utilized as a supplementary data source to traditional transportation planning data collection methods or in conjunction with other data sources, such as social networking platforms. The examination of the proposed peer-to-peer methodology presented within this dissertation provides a first look at the potential of many-to-many modeling for transportation planning. The peer-to-peer model was found to be superior to the doubly-constrained gravity model with respect to intrazonal trips. Furthermore, the peer-to-peer model was found to better estimate productions, attractions, and zone to zone movements when a linear function was used for long trips, and was computationally more proficient for all models examined.
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    Transportation planning
    Many-to-many modeling
    Peer-to-peer modeling
    Location-based social networking
    Origin-destination matrix
    Land use
    URI
    http://hdl.handle.net/2152/31347
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin