Electrochemical properties and ion-extraction mechanisms of Li-rich layered oxides and spinel oxides

Date

2015-08

Authors

Knight, James Courtney

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Li-ion batteries are widely used in electronics and automotives. Despite their success, improvements in cost, safety, cycle life, and energy density are necessary. One way to enhance the energy density is to find advanced cathodes such as Li-rich layered oxides, which are similar to the commonly layered oxide cathodes (e.g., LiCoO2), except there are additional Li ions in the transition-metal layer, due to their higher charge-storage capacity. Another way of advancing is to design new battery chemistries, such as those involving multivalent-ion systems (e.g., Mg2+ and Zn2+) as they could offer higher charge-storage capacities and/or cost advantages.

Li-rich layered oxides have a complex first charge-discharge cycle, which affects their other electrochemical properties. Ru doping was expected to improve the performance of Li-rich layered oxides due to its electroactivity and overlap of the Ru4+/5+:4d band with the O2-:2p band, but it unexpectedly decreased the capacity due to the reduction in oxygen loss behavior. Preliminary evidence points to the formation of Ru-Ru dimers, which raises the Ru4+/5+:4d band, as the cause of this behavior.

Li-rich layered oxides suffer from declining operating voltage during cycling, and it is a huge challenge to employ them in practical cells. Raising the Ni oxidation state was found to reduce the voltage decay and improve the cyclability; however, it also decreased the discharge capacity. Increasing the Ni oxidation state minimized the formation of Mn3+ ions during discharge and Mn dissolution, which led to the improvements in voltage decay and cyclability.

Extraction of lithium from spinel oxides such as LiMn2O4 with acid was found to follow a Mn3+ disproportionation mechanism and depend on the Mn3+ content. Other common dopants like Cr3+, Fe3+, Co3+, or Ni2+/3+ did not disproportionate, and no ion-exchange of Li+ with H+ occurred in the tetrahedral sites of the spinel oxides.

Extraction with acid of Mg and Zn from spinel oxides, such as MgMn2O4 and ZnMn2O4, were also found to follow the same mechanism as Li-spinels. The Mg-spinels, however, do experience ion exchange when Mg ions are in the octahedral sites. Chemical extraction of Mg or Zn with an oxidizing agent NO2BF4 in acetonitrile medium, however, failed due to the electrostatic repulsion felt by the migrating divalent ions. In contrast, extraction with acid was successful as Mn dissolution from the lattice opened up favorable pathways for extraction.

Description

text

LCSH Subject Headings

Citation