• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    • Repository Home
    • UT Faculty/Researcher Works
    • UT Faculty/Researcher Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pseudo Jahn-Teller Effect In The Origin Of Enhanced Flexoelectricity

    Icon
    View/Open
    2015_01_Pseudo.pdf (536.2Kb)
    Date
    2015-01
    Author
    Bersuker, Issac B.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The controversy between the theory and experiment in explaining the origin of enhanced flexoelectricity is removed by taking into account the pseudo Jahn-Teller effect (PJTE) which, under certain conditions, creates local dipolar distortions of dynamic nature, resonating between two or more equivalent orientations. The latter become nonequivalent under a strain gradient thus producing enhanced flexoelectricity: it is much easier to orient ready-made dipoles than to polarize an ionic solid. For BaTiO3, the obtained earlier numerical data for the adiabatic potential energy surface in the space of dipolar displacements in the Ti centers were used to estimate the flexoelectric coefficient integral in the paraelectric phase in a one-dimensional model with the strain gradient along the [111] direction: integral = -0.43 X 10(-6) Cm-1. This eliminates the huge contradiction between the experimental data of integral similar to mu Cm-1 for this case and the theoretical predictions (without the PJTE) of 3-4 orders-of-magnitude smaller values. Enhanced flexoelectricity is thus expected in solids with a sufficient density of centers that have PJTE induced dipolar instabilities. It explains also the origin of enhanced flexoelectricity observed in other solids, noticeable containing Nb perovskite centers which are known to have a PJTE instability, similar to that of Ti centers. The SrTiO3 crystal as a virtual ferroelectric in which the strain gradient eases the condition of PJTE polar instability is also discussed. (C) 2015 AIP Publishing LLC.
    Department
    Institute for Theoretical Chemistry
    Subject
    molecular-systems
    thin-films
    batio3
    polarization
    crystals
    solids
    deformation
    instability
    physics, applied
    URI
    http://hdl.handle.net/2152/31050
    Citation
    Bersuker, Issac B., >Pseudo Jahn–Teller effect in the origin of enhanced flexoelectricity,> Appl. Phys. Lett. 106, 022903 (2015). doi: 10.1063/1.4905679
    Collections
    • UT Faculty/Researcher Works
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin