• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian learning methods for potential energy parameter inference in coarse-grained models of atomistic systems

    Icon
    View/Open
    WRIGHT-DISSERTATION-2015.pdf (1.075Mb)
    Date
    2015-05
    Author
    Wright, Eric Thomas
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The present work addresses issues related to the derivation of reduced models of atomistic systems, their statistical calibration, and their relation to atomistic models of materials. The reduced model, known in the chemical physics community as a coarse-grained model, is calibrated within a Bayesian framework. Particular attention is given to developing likelihood functions, assigning priors on coarse-grained model parameters, and using data from molecular dynamics representations of atomistic systems to calibrate coarse-grained models such that certain physically relevant atomistic observables are accurately reproduced. The developed Bayesian framework is then applied in three case studies of increasing complexity and practical application. A freely jointed chain model is considered first for illustrative purposes. The next example entails the construction of a coarse-grained model for a liquid heptane system, with the explicit design goal of accurately predicting a vapor-liquid transfer free energy. Finally, a coarse-grained model is developed for an alkylthiophene polymer that has been shown to have practical use in certain types of photovoltaic cells. The development therein employs Bayesian decision theory to select an optimal CG potential energy function. Subsequently, this model is subjected to validation tests in a prediction scenario that is relevant to the performance of a polyalkylthiophene-based solar cell.
    Department
    Computational Science, Engineering, and Mathematics
    Description
    text
    Subject
    Coarse-grained modeling
    Uncertainty quantification
    Bayesian statistics
    Theoretical chemistry
    Organic photovoltaic materials
    URI
    http://hdl.handle.net/2152/30464
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin