TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Functional polymers: polyoxanorbornene-based block copolymers for the separation of f-elements and luminescent conducting metallopolymers

    Thumbnail
    View/Open
    MITCHELL-DISSERTATION-2014.pdf (4.672Mb)
    Date
    2014-05
    Author
    Mitchell, Lauren Avery
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    A new polymeric material with a polyoxanorbornene backbone and carbamoylmethylphosphine oxide, CMPO, ligand pendant groups has been synthesized, characterized, and studied. The ability of the material to selectively partition actinides utilizing a biphasic extraction strategy was tested. The polymeric materials had significantly higher (> 5-25 times) ability to extract Th4+ than the monomeric system. The molecular weight of the material affected the extraction and separation abilities. The lower molecular weight material extracted more ions, but was less discriminate for thorium(IV) over cerium(III), lanthanum(III), and europium(III), than the higher molecular weight material. Structural modifications to this system were made by creating block copolymers. The influence of additional functionalities, created by the addition of new polymeric blocks, was investigated. The ability of the material to selectively partition actinides utilizing both solid-liquid and liquid-liquid extraction strategies was tested. Extraction efficiencies comparable to liquid-liquid extractions were achieved in the solid-liquid extractions. The extraction behavior of the materials was significantly altered by the incorporation of new blocks. The incorporation of glycol chains into the system caused an increase in the uptake of thorium(IV) over the homopolymers. The incorporation of blocks of glycol chains and blocks of cross-linked hydroxcoumarian increased the selectivity significantly (XTh/Eu 2.3 – 4.5 times higher) over the homopolymer. These materials show tremendous promise as modular polymeric scaffolds. A novel emissive tetradentate platinum complex with electropolymerizable ethylenedioxythiophene groups has been synthesized and characterized. This material has been developed for use as the active layer in polymer light-emitting diodes. Electropolymerization offers ease of processing by depositing thin films directly onto an electrode during the polymerization process. Additionally because the emitter is covalently bound in the polymer, it cannot aggregate as is the case with some small molecule emitters. The platinum complex displayed emission peaks at 510 nm and 544 nm. Electropolymerization resulted in a conductive and emissive thin film, with an emission maximum at 453 nm.
    Department
    Chemistry
    Subject
    Polymer
    Separations
    Luminescent
    URI
    http://hdl.handle.net/2152/30462
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin