Development and application of a compositional wellbore simulator for modeling flow assurance issues and optimization of field production

Access full-text files

Date

2015-05

Authors

Abouie, Ali

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Flow assurance is crucial in the oil industry since it guarantees the success and economic production of hydrocarbon fluid, especially in offshore and deep water oil fields. In fact, the ultimate goal of flow assurance is to maintain flow in the wellbore and pipelines as long as possible. One of the most common challenges in flow assurance is the buildup of solids, such as asphaltene and scale particles. These Solid particles can deposit in the wellbore, flowline, and riser and affect the wellbore performance by reducing the cross section of the pipeline, which eventually results in pipeline blockage. Hence, neglecting the importance of flow assurance problems and failure in thorough understanding of the fluid behavior in the production systems may result in plugged pipeline, production loss, flowline replacement, and early abandonments of the well. As a result, continuous evaluations are needed at the development stage and during the life of reservoirs to predict the potential, the extent, and the severity of the problem to plan for inhibition and remediation jobs. In fact, it is more preferable to prevent flow assurance problems through the designing and operating procedures rather than remediating the problems, which has higher risks of success and higher loss of revenue due to frequent well shut down.

As a part of this research, we enhanced the capabilities of our in-house compositional wellbore simulator (UTWELL) to model various production and flow assurance scenarios. Initially, we developed and implemented a robust gas lift model into UTWELL to model artificial lift technique for reservoirs with low pressure. The developed model is able to model both steady state and transient flow along with blackoil and Equation-of-State compositional models. The improved version was successfully validated against a commercial simulator.

Then, we applied our dynamic model to track the behavior of asphaltene during gas lift processes and evaluated the risk of asphaltene deposition. Several deposition mechanisms were incorporated to study the transportation, entrainment, and deposition of solid particles in the wellbore. The simulation results illustrated the effect of light gas injection on asphaltene deposition and well performance.

Finally, a step by step algorithm is presented for coupling a geochemical package, IPhreeqc, with UTWELL. The developed model is able to model homogenous and heterogeneous, non-isothermal, non-isobaric aqueous phase reactions assuming local equilibrium or kinetic conditions. This tool was then utilized to model scale deposition in the wellbore for various scenarios. In addition, the results showed that integrating IPhreeqc has promise in terms of CPU time compared to the traditional approach of reading and writing the input and output files.

Description

text

LCSH Subject Headings

Citation