Development of a neutron radiography and computed tomography system at a university research reactor

Access full-text files

Date

2006-05

Authors

Haas, Derek Anderson, 1981-

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Neutron radiography is a non-destructive analysis tool that complements X-ray transmission radiography. The use of neutrons provides the ability to image the interior of an object that has a metal core of steel or lead that would shield the interior from X-ray inspection. Neutron tomography is the use of a set of images of a single sample taken at various angles to produce a three dimensional rendition of the sample that greatly increases the effectiveness of neutron radiography as a non-destructive testing tool. A neutron radiography and tomography system has been built at the 1.1 MW TRIGA Mark II nuclear research reactor at The University of Texas at Austin in the Nuclear Engineering Teaching Lab. The Texas Neutron Imaging Facility is located on beam port five of the reactor and is housed in a shielding cave made of concrete to minimize radiation dose to users. The system itself integrates a sample positioning system and neutron sensitive camera through the use of a control code written in National Instruments Labview software. The code was written to increase the efficiency of the imaging process and to provide flexibility in the system. Precise sample positioning and timing of image acquisition provided by the code allows for the collection of data that can be used in computed tomography. The system has produced results in the form of radiographs and 3-D reconstructions of sample objects.

Description

text

Citation